• 沒有找到結果。

(1) (5 Points) Calculate d dx Z tan x sin x p1 + t2dt

N/A
N/A
Protected

Academic year: 2022

Share "(1) (5 Points) Calculate d dx Z tan x sin x p1 + t2dt"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Calculus 1, Quiz 5 Instructor: Frank Liou

Exam Time: 20 min

Remark. No partial credit if the answer is wrong. Check your solution carefully before you turn in your answer sheet.

(1) (5 Points) Calculate d dx

Z tan x sin x

p1 + t2dt.

Solution:

d dx

Z tan x sin x

p1 + t2dt =p

1 + tan2· sec2x −p

1 + sin2x cos x.

(2) (5 Points) Let f (x) = x + x2+ · · · + xn, x ∈ R. Then f0(x) = 1 + 2x + · · · + nxn−1. (a) (3 Points) Evaluate

n

X

i=1

i

3i−1 using the formula for f0(x).

(b) (2 Points) Find

X

n=1

n

3n−1 using (a).

Solution:

Let g(x) = x + · · · + xn, x ∈ R. Since

f (x) = x + x + · · · + xn= x(1 − xn)

1 − x = x − xn+1 1 − x . Hence

f0(x) = (1 − (n + 1)xn)(1 − x) + (x − xn+1)

(1 − x)2 = 1 − (n + 1)xn+ nxn+1 (1 − x)2 . The n-th partial sum of

X

n=1

n

3n−1 is given by

n

X

i=1

i 3i−1 = 9

4



1 −n + 1 3n + n

3n+1

 . By taking n → ∞, we obtain

X

n=1

n 3n−1 = 9

4.

(3) (5 Points) The change of variable formula is given by Z g(d)

g(c)

f (x)dx = Z d

c

f (g(u))g0(u)du

1

(2)

2

where g ∈ C1[a, b] and increasing. Evaluate Z

3 2

2 2

p1 − x2dx

using the change of variable x = sin u. Here x = sin u is increasing on π

4 ≤ u ≤ π 3. Solution:

Z

3 2

2 2

p1 − x2dx = Z π

3

π 4

p

1 − sin2u · cos udu

= Z π

3

π 4

cos2udu

= 1 2

Z π

3

π 4

(1 + cos 2u)du

= 1 2

π 3 − π

4

 +1

4



sin 2 · π

3 − sin 2 ·π 4



= π 24 +

√ 3 − 2

8 .

(4) (5 Points) The integration by part formula is given by Z b

a

f (x)g0(x)dx = f (x)g(x)|x=bx=a− Z b

a

g(x)f0(x)dx.

Evaluate

Z π 0

x cos nxdx

using integration by part formula. Here n is a natural number.

Solution:

Z π 0

x cos nxdx = x sin nx n

π 0

− 1 n

Z π 0

sin nxdx

= 1

n2(cos nπ − 1)

= (−1)n− 1 n2 .

參考文獻