• 沒有找到結果。

Reflection from Layered Surfaces due to Subsurface Scattering

N/A
N/A
Protected

Academic year: 2022

Share "Reflection from Layered Surfaces due to Subsurface Scattering"

Copied!
27
0
0

加載中.... (立即查看全文)

全文

(1)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Reflection from Layered Surfaces due to Subsurface Scattering

Pat Hanrahan Wolfgang Krueger

SIGGRAPH 1993

(2)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Outlines

1 Ref. & Trans.

2 Desc. of Materials

3 Light Trans. Eq.

4 Solving the Int. Eq.

4 Multiple Scattering

(3)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Reflected and Transmitted Radiances

Lrr, φr) = Lr,sr, φr) + Lr,vr, φr) (1) Ltt, φt) = Lrit, φt) + Lt,vt, φt) (2)

(4)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

BRDF and BTDF

fri, φi; θr, φr) ≡ Lrr, φr) Lii, φi) cos θidwi

(BRDF ) (3)

fti, φi; θt, φt) ≡ Ltt, φt) Lii, φi) cos θidwi

(BT DF ) (4)

(5)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Fresnel transmission and reflection

For planar surface

Lrr, φr) = R12(ni, nt; θi, φi → θr, φr)Lii, φi) (5) Ltt, φt) = T12(ni, nt; θi, φi → θt, φt)Lii, φi) (6)

(6)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Fresnel transmission and reflection

For planar surface

Lrr, φr) = R12(ni, nt; θi, φi → θr, φr)Lii, φi) (5) Ltt, φt) = T12(ni, nt; θi, φi → θt, φt)Lii, φi) (6) where

R12(ni, nt; θi, φi→ θr, φr) = R(ni, nt, cos θi, cos θt) T12(ni, nt; θi, φi→ θt, φt) = n2t

n2iT = n2t

n2i(1 − R)

(7)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Fresnel transmission and reflection

For planar surface

Lrr, φr) = R12(ni, nt; θi, φi → θr, φr)Lii, φi) (5) Ltt, φt) = T12(ni, nt; θi, φi → θt, φt)Lii, φi) (6) In our model of reflection:

fr = Rfr,s+ T fr,v = Rfr,s+ (1 − R)fr,v (7)

(8)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Description of Materials

Index of Refraction

Absorption and scattering cross section σt= σa+ σs

Scattering phase function Henyey-Greenstein pHG(cos j) = 1

1 − g2

(1 + g2− 2g cos j)3/2

(9)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Light Transport Equations

Transport theory models the distribution of light in a volume by

∂L(~x, θ, φ)

∂s =

−σtL(~x, θ, φ) + σs Z

p(~x; θ, φ; θ0, φ0)L(~x, θ0, φ0)dθ00 (8)

cos θ∂L(θ, φ)

∂z =

−σtL(θ, φ) + σs

Z

p(θ, φ; θ0, φ0)L(θ0, φ0)dθ00 (9)

L(z; θ, φ) = (10)

Z z 0

eR0z0σtcos θdz00 Z

σs(z0)p(z0; θ, φ; θ0, φ0)L(z0; θ0; φ0)dw0 dz0 cos θ

(10)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Light Transport Equations

∂L(~x, θ, φ)

∂s =

−σtL(~x, θ, φ) + σs Z

p(~x; θ, φ; θ0, φ0)L(~x, θ0, φ0)dθ00 (8)

cos θ∂L(θ, φ)

∂z =

−σtL(θ, φ) + σs

Z

p(θ, φ; θ0, φ0)L(θ0, φ0)dθ00 (9)

L(z; θ, φ) = (10)

Z z 0

eR0z0σtcos θdz00 Z

σs(z0)p(z0; θ, φ; θ0, φ0)L(z0; θ0; φ0)dw0 dz0 cos θ

(11)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Light Transport Equations

∂L(~x, θ, φ)

∂s =

−σtL(~x, θ, φ) + σs Z

p(~x; θ, φ; θ0, φ0)L(~x, θ0, φ0)dθ00 (8)

cos θ∂L(θ, φ)

∂z =

−σtL(θ, φ) + σs

Z

p(θ, φ; θ0, φ0)L(θ0, φ0)dθ00 (9)

L(z; θ, φ) = (10)

Z z 0

eR0z0σtcos θdz00 Z

σs(z0)p(z0; θ, φ; θ0, φ0)L(z0; θ0; φ0)dw0 dz0 cos θ

(12)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

L(θ, φ) = L+(θ, φ) + L(π − θ, φ) (11)

L+(z = 0; θ0, φ0) = Z

ft,s(θ, φ; θ0, φ0)Li(θ, φ)dwi (12)

= T12(ni, nt; θi, φi → θ0, φ0)Lii, φi) (13)

(13)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

L(θ, φ) = L+(θ, φ) + L(π − θ, φ) (11) L+(z = 0; θ0, φ0) =

Z

ft,s(θ, φ; θ0, φ0)Li(θ, φ)dwi (12)

= T12(ni, nt; θi, φi → θ0, φ0)Lii, φi) (13)

(14)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

L(θ, φ) = L+(θ, φ) + L(π − θ, φ) (11) L+(z = 0; θ0, φ0) =

Z

ft,s(θ, φ; θ0, φ0)Li(θ, φ)dwi (12)

= T12(ni, nt; θi, φi → θ0, φ0)Lii, φi) (13)

(15)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Lr,vr, φr) = Z

ft,s(θ, φ; θr, φr)L(z = 0; θ, φ)dw (14)

= T21(n2, n1; θ, φ → θr, φr)L(θ, φ) (15) Lt,vt, φt) =

Z

ft,s(θ, φ; θt, φt)L+(z = d; θ, φ)dw (16)

= T23(n2, n3; θ, φ → θt, φt)L+(z = d; θ, φ)

(16)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Lr,vr, φr) = Z

ft,s(θ, φ; θr, φr)L(z = 0; θ, φ)dw (14)

= T21(n2, n1; θ, φ → θr, φr)L(θ, φ) (15)

Lt,vt, φt) = Z

ft,s(θ, φ; θt, φt)L+(z = d; θ, φ)dw (16)

= T23(n2, n3; θ, φ → θt, φt)L+(z = d; θ, φ)

(17)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Lr,vr, φr) = Z

ft,s(θ, φ; θr, φr)L(z = 0; θ, φ)dw (14)

= T21(n2, n1; θ, φ → θr, φr)L(θ, φ) (15) Lt,vt, φt) =

Z

ft,s(θ, φ; θt, φt)L+(z = d; θ, φ)dw (16)

= T23(n2, n3; θ, φ → θt, φt)L+(z = d; θ, φ)

(18)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Lr,vr, φr) = Z

ft,s(θ, φ; θr, φr)L(z = 0; θ, φ)dw (14)

= T21(n2, n1; θ, φ → θr, φr)L(θ, φ) (15) Lt,vt, φt) =

Z

ft,s(θ, φ; θt, φt)L+(z = d; θ, φ)dw (16)

= T23(n2, n3; θ, φ → θt, φt)L+(z = d; θ, φ)

(19)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Solving the Intergral Equation

L =

X

i=0

L(i)

L(i+1)(z; θ, φ) = (17)

Z z 0

e

Rz0 0 σtdz00

cos θ

Z

σs(z0)p(z0; θ, φ; θ0, φ0)L(i)(z0; θ0; φ0)dw0 dz0 cos θ

(20)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

First-Order Approximation

L(0)+ = L+(z = 0)e−τ / cos θ (18) where

τ (z) = Z z

0

σtdz

(19)

(21)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

First-Order Approximation

L(0)+ = L+(z = 0)e−τ / cos θ (18) where

τ (z) = Z z

0

σtdz

(19)

L(0)t,vt, φt) = T23(n2, n3; θ, φ → θt, φt)L(0)+ (θ, φ)

= T12T23e−τdLii, φi) (20)

(22)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

First-Order Approximation

L(0)+ = L+(z = 0)e−τ / cos θ (18) where

τ (z) = Z z

0

σtdz

(19)

L(0)t,vt, φt) = T23(n2, n3; θ, φ → θt, φt)L(0)+ (θ, φ)

= T12T23e−τdLii, φi) (20)

L(1)r,vr, φr) = W T12T21p(φ − θr, φr; θi, φi) cos θi

cos θi+ cos θr (1 − e−τd(1/ cos θi+1/ cos θr))Lii, φi) (21)

(23)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

The reflection steadily increases as the layer becomes thicker.

(24)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

The distributions vary as a function of reflection direction.

Lambert’s Law predicts a constant reflectance in all directions.

(25)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

(26)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Multiple Scattering

An Monte Carlo Algorithm:

Initialize:

Events:

Step:

Scatter:

Score:

(27)

Ref. & Trans. Desc. of Materials Light Trans. Eq. Solving the Int. Eq. Multiple Scattering

Lr,vr, φr) = L(1)r, φr) + Lm (22)

參考文獻

相關文件

Fully quantum many-body systems Quantum Field Theory Interactions are controllable Non-perturbative regime..

compounds, focusing on their thermoelectric, half-metallic, and topological properties. Experimental people continue synthesizing novel Heusler compounds and investigating

• About 14% of jobs in OECD countries participating in Survey  of Adult Skills (PIAAC) are highly automatable (i.e., probability  of automation of over 70%).  ..

Discovering the City by Mining Diverse and Multimodal Data Streams – IBM Grand Challenge: New York City 360. §  Exploring and Integrating Multiple Contents and Sources for

For consistent predictions or strongly ordinal costs, if g makes test error ∆ in the induced binary problem, then r g pays test cost at most ∆ in ordinal ranking. a one-step

For consistent predictions or strongly ordinal costs, if g makes test error ∆ in the induced binary problem, then r g pays test cost at most ∆ in ordinal ranking. a one-step

regardless of the absolute hardness of the induced binary prob., optimality in binary classification =⇒ optimality in ordinal ranking reduction does not introduce additional

For concordant predictions or strongly ordinal costs, if g makes test error ∆ in the induced binary problem, then r g pays test cost at most ∆ in ordinal ranking. a one-step