Reference R-R D3 Conclusion and Future
S-Duality for D3-Brane in NS-NS and R-R Backgrounds
Chen-Te Ma Collaborator: Pei-Ming Ho
National Taiwan University
arXiv:1311.3393 [hep-th]
January 17, 2014
Reference R-R D3 Conclusion and Future
Reference
• P. -M. Ho and Y. Matsuo, M5 from M2, JHEP 0806 (2008) 105 [arXiv:0804.3629 [hep-th]].
• P. -M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 0808 (2008) 014 [arXiv:0805.2898 [hep-th]].
• P. -M. Ho and C. -H. Yeh, D-brane in R-R Field Background, JHEP 1103 (2011) 143 [arXiv:1101.4054 [hep-th]].
• P. -M. Ho and C. -T. Ma, Effective Action for Dp-Brane in Large RR (p-1)-Form Background, JHEP 1305 (2013) 056 [arXiv:1302.6919 [hep-th]].
• P. -M. Ho and C. -T. Ma, S-Duality for D3-Brane in NS-NS and R-R Backgrounds, arXiv:1311.3393 [hep-th].
Reference R-R D3 Conclusion and Future
From NS-NS D3 to R-R D3
R-R D4 M5
NS-NS D4 D3
Reference R-R D3 Conclusion and Future
From NS-NS D3 to R-R D3
R-R D3 D3
NS-NS D3
Field Redefinition, …
Reference R-R D3 Conclusion and Future
Poisson Limit
LNS−NS ≡ −1
4Fαβ0 F0αβ− 1
2Fα ˙0µF0α ˙µ−1
4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.
bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2 = F0˙1 ˙2+ g {a0˙1, a0˙2} = H˙1 ˙2.
Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ
∂βbµ˙− Bβ ˙νVν ˙˙µ
.
LNS−NS = −1
4Fαβ0 F0αβ+1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
Reference R-R D3 Conclusion and Future
Poisson Limit
LNS−NS ≡ −1
4Fαβ0 F0αβ− 1
2Fα ˙0µF0α ˙µ−1
4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.
bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.
Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ
∂βbµ˙− Bβ ˙νVν ˙˙µ
.
LNS−NS = −1
4Fαβ0 F0αβ+1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
Reference R-R D3 Conclusion and Future
Poisson Limit
LNS−NS ≡ −1
4Fαβ0 F0αβ− 1
2Fα ˙0µF0α ˙µ−1
4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.
bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.
Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ
∂βbµ˙− Bβ ˙νVν ˙˙µ
.
LNS−NS = −1
4Fαβ0 F0αβ+1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
Reference R-R D3 Conclusion and Future
Poisson Limit
LNS−NS ≡ −1
4Fαβ0 F0αβ− 1
2Fα ˙0µF0α ˙µ−1
4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.
bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.
Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ
∂βbµ˙− Bβ ˙νVν ˙˙µ
.
LNS−NS = −1
4Fαβ0 F0αβ+1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
Reference R-R D3 Conclusion and Future
Poisson Limit
L(1)NS−NS ≡ −1 2φ2+1
2αβFαβ0 φ +1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
φ = F010 .
L(2)NS−NS = −1
2F2˙1 ˙2+ 1
2αβFαβ0 F˙1 ˙2+1
2Fα ˙00µF00α ˙µ− 1
2H˙1 ˙2H˙1 ˙2.
∂µ˙
F˙1 ˙2− F010
= 0.
Reference R-R D3 Conclusion and Future
Poisson Limit
L(1)NS−NS ≡ −1 2φ2+1
2αβFαβ0 φ +1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
φ = F010 .
L(2)NS−NS = −1
2F2˙1 ˙2+ 1
2αβFαβ0 F˙1 ˙2+1
2Fα ˙00µF00α ˙µ− 1
2H˙1 ˙2H˙1 ˙2.
∂µ˙
F˙1 ˙2− F010
= 0.
Reference R-R D3 Conclusion and Future
Poisson Limit
L(1)NS−NS ≡ −1 2φ2+1
2αβFαβ0 φ +1
2Fα ˙00µF00α ˙µ−1
2H˙1 ˙2H˙1 ˙2.
φ = F010 .
L(2)NS−NS = −1
2F2˙1 ˙2+1
2αβFαβ0 F˙1 ˙2+1
2Fα ˙00µF00α ˙µ− 1
2H˙1 ˙2H˙1 ˙2.
∂µ˙
F˙1 ˙2− F010
= 0.
Reference R-R D3 Conclusion and Future
Poisson Limit
F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2
= αβ∂βaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.
αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙ν∂ν˙a0α].
If we integrate out aα0, we getµ ˙˙ν∂ν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.
−αβ∂µ˙aβB˘αµ˙.
Reference R-R D3 Conclusion and Future
Poisson Limit
F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2
= αβ∂βaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.
αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙ν∂ν˙a0α].
If we integrate out aα0, we getµ ˙˙ν∂ν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.
−αβ∂µ˙aβB˘αµ˙.
Reference R-R D3 Conclusion and Future
Poisson Limit
F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2
= αβ∂βaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.
αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙ν∂ν˙a0α].
If we integrate outa0α, we getµ ˙˙ν∂ν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.
−αβ∂µ˙aβB˘αµ˙.
Reference R-R D3 Conclusion and Future
Poisson Limit
F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2
= αβ∂βaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.
αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙ν∂ν˙a0α].
If we integrate outa0α, we getµ ˙˙ν∂ν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.
−αβ∂µ˙aβB˘αµ˙.
Reference R-R D3 Conclusion and Future
Poisson Limit
We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.
F010 F˙1 ˙2 → 1
2gαβFαβ Fα ˙00µ= Fα ˙µ.
LRR = −1
2H2˙1 ˙2+1
2Fα ˙µFα ˙µ−1
4Fµ ˙˙νFµ ˙˙ν+ 1
2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.
Reference R-R D3 Conclusion and Future
Poisson Limit
We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.
F010 F˙1 ˙2 → 1
2gαβFαβ Fα ˙00µ= Fα ˙µ.
LRR = −1
2H2˙1 ˙2+1
2Fα ˙µFα ˙µ−1
4Fµ ˙˙νFµ ˙˙ν+ 1
2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.
Reference R-R D3 Conclusion and Future
Poisson Limit
We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.
F010 F˙1 ˙2 → 1
2gαβFαβ Fα ˙00µ= Fα ˙µ.
LRR = −1
2H2˙1 ˙2+1
2Fα ˙µFα ˙µ−1
4Fµ ˙˙νFµ ˙˙ν+ 1
2gαβFαβ.
Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.
Reference R-R D3 Conclusion and Future
Poisson Limit
We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.
F010 F˙1 ˙2 → 1
2gαβFαβ Fα ˙00µ= Fα ˙µ.
LRR = −1
2H2˙1 ˙2+1
2Fα ˙µFα ˙µ−1
4Fµ ˙˙νFµ ˙˙ν+ 1
2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.
Reference R-R D3 Conclusion and Future
Coupling Constant
LNS−NS ≡ 1
gG0 2 h
−1
4Fαβ0 F0αβ−1
2Fα ˙0µF0α ˙µ−1
4Fµ ˙0˙νF0 ˙µ ˙νi , where gG0 is the gauge coupling.
bµ˙ →gG0 2bµ˙, Bαµ˙ →gG0 2Bαµ˙, aµ˙ →gG0 2aµ˙, aα →gG0 2aα.
Reference R-R D3 Conclusion and Future
Coupling Constant
LNS−NS ≡ 1
gG0 2 h
−1
4Fαβ0 F0αβ−1
2Fα ˙0µF0α ˙µ−1
4Fµ ˙0˙νF0 ˙µ ˙νi , where gG0 is the gauge coupling.
bµ˙ →gG0 2bµ˙, Bαµ˙ →gG0 2Bαµ˙, aµ˙ →gG0 2aµ˙, aα →gG0 2aα.
Reference R-R D3 Conclusion and Future
Coupling Constant
LRR ≡ 1 gG2
h−1
2H2˙1 ˙2+1
2Fα ˙µFα ˙µ−1
4Fµ ˙˙νFµ ˙˙ν + 1
2θαβFαβi , but with the gauge coupling gG and noncommutativity parameter θ defined by
gG ≡ 1 gG0 , θ≡gG0 2θ0,
and with all the coupling constants g replaced by θ.
Reference R-R D3 Conclusion and Future
Coupling Constant
Notice that the need of two independent parameters (gG0 , θ0) or (gG, θ) can be seen only if higher order terms are included. At the lowest order, we can scale the gauge fields so that the R-R action has
gG = gG0 and θ = θ0.
Reference R-R D3 Conclusion and Future
Double Scaling Limit
The double scaling limit of NS-NS is:
`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .
The double scaling limit of R-R is:
`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .
Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.
Reference R-R D3 Conclusion and Future
Double Scaling Limit
The double scaling limit of NS-NS is:
`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .
The double scaling limit of R-R is:
`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .
Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.
Reference R-R D3 Conclusion and Future
Double Scaling Limit
The double scaling limit of NS-NS is:
`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .
The double scaling limit of R-R is:
`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .
Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.
Reference R-R D3 Conclusion and Future
S-Duality to all Orders
FAB0 ≡ FAB0 + [a0A, aB0 ]∗. [A, B]∗≡ A ∗ B − B ∗ A.
A ∗ B ≡ A expg µ ˙˙ν←−
∂µ˙
−
→∂ν˙
2
B.
F0˙1 ˙2 = H˙1 ˙2, Z
d4x 1
2αβFαβ0 F˙1 ˙2 = Z
d4x 1
2gαβFαβ,
βαµ ˙˙νF0β ˙ν = Fα ˙µ.
Reference R-R D3 Conclusion and Future
S-Duality to all Orders
FAB0 ≡ FAB0 + [a0A, aB0 ]∗. [A, B]∗≡ A ∗ B − B ∗ A.
A ∗ B ≡ A expg µ ˙˙ν←−
∂µ˙
−
→∂ν˙
2
B.
F0˙1 ˙2 = H˙1 ˙2, Z
d4x 1
2αβFαβ0 F˙1 ˙2 = Z
d4x 1
2gαβFαβ,
βαµ ˙˙νF0β ˙ν = Fα ˙µ.
Reference R-R D3 Conclusion and Future
S-Duality to all Orders
H˙1 ˙2 = H˙1 ˙2+ [b˙1, b˙2]∗, F˙1 ˙2 = F˙1 ˙2,
αβFβ ˙µ = −
∂αbµ˙− g {∂ρ˙Xµ˙, ˆBαρ˙}∗∗
,
Fαβ = Fαβ + g [−Fα ˙µBˆβµ˙ + Fβ ˙µBˆαµ˙] + g2Fµ ˙˙ν{ ˆBαµ˙, ˆBβν˙}∗∗.
(A ∗ ∗B) ≡ Aexp(g
µ1 ˙ν1˙ ←−
∂µ1˙
−→∂ν1˙
2 ) − 1
g µ˙2ν˙2←−
∂µ˙2−→
∂ν˙2 B as
{A, B}∗∗≡ (A ∗ ∗B) + (B ∗ ∗A).
Reference R-R D3 Conclusion and Future
S-Duality to all Orders
H˙1 ˙2 = H˙1 ˙2+ [b˙1, b˙2]∗, F˙1 ˙2 = F˙1 ˙2,
αβFβ ˙µ = −
∂αbµ˙− g {∂ρ˙Xµ˙, ˆBαρ˙}∗∗
,
Fαβ = Fαβ + g [−Fα ˙µBˆβµ˙ + Fβ ˙µBˆαµ˙] + g2Fµ ˙˙ν{ ˆBαµ˙, ˆBβν˙}∗∗.
(A ∗ ∗B) ≡ Aexp(g
µ1 ˙ν1˙ ←−
∂µ1˙
−→∂ν1˙
2 ) − 1
g µ˙2ν˙2←−
∂µ˙2−→
∂ν˙2 B as
{A, B}∗∗≡ (A ∗ ∗B) + (B ∗ ∗A).
Reference R-R D3 Conclusion and Future
Gauge Algebra and Closedness
Z
{A, {B, C }∗∗}∗∗= Z
{{A, B}∗∗, C }∗∗,
although it is not associative without integration.
g µ ˙˙ν{∂µ˙f , ∂ν˙g }∗∗= [f , g ]∗.
Reference R-R D3 Conclusion and Future
Gauge Algebra and Closedness
Z
{A, {B, C }∗∗}∗∗= Z
{{A, B}∗∗, C }∗∗,
although it is not associative without integration.
g µ ˙˙ν{∂µ˙f , ∂ν˙g }∗∗= [f , g ]∗.
Reference R-R D3 Conclusion and Future
Conclusion and Future
• We extend S-duality toinfinite order. We also find
non-commutative R-R D3-brane beyond Poisson. The gauge algebra of this theory is also extended to all orders.
• DBI ?
Reference R-R D3 Conclusion and Future
Conclusion and Future
• We extend S-duality toinfinite order. We also find
non-commutative R-R D3-brane beyond Poisson. The gauge algebra of this theory is also extended to all orders.
• DBI ?