• 沒有找到結果。

From NS-NS D3 to R-R D3

N/A
N/A
Protected

Academic year: 2022

Share "From NS-NS D3 to R-R D3"

Copied!
34
0
0

加載中.... (立即查看全文)

全文

(1)

Reference R-R D3 Conclusion and Future

S-Duality for D3-Brane in NS-NS and R-R Backgrounds

Chen-Te Ma Collaborator: Pei-Ming Ho

National Taiwan University

arXiv:1311.3393 [hep-th]

January 17, 2014

(2)

Reference R-R D3 Conclusion and Future

Reference

P. -M. Ho and Y. Matsuo, M5 from M2, JHEP 0806 (2008) 105 [arXiv:0804.3629 [hep-th]].

P. -M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 0808 (2008) 014 [arXiv:0805.2898 [hep-th]].

P. -M. Ho and C. -H. Yeh, D-brane in R-R Field Background, JHEP 1103 (2011) 143 [arXiv:1101.4054 [hep-th]].

P. -M. Ho and C. -T. Ma, Effective Action for Dp-Brane in Large RR (p-1)-Form Background, JHEP 1305 (2013) 056 [arXiv:1302.6919 [hep-th]].

P. -M. Ho and C. -T. Ma, S-Duality for D3-Brane in NS-NS and R-R Backgrounds, arXiv:1311.3393 [hep-th].

(3)

Reference R-R D3 Conclusion and Future

From NS-NS D3 to R-R D3

R-R D4 M5

NS-NS D4 D3

(4)

Reference R-R D3 Conclusion and Future

From NS-NS D3 to R-R D3

R-R D3 D3

NS-NS D3

Field Redefinition, …

(5)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2 = F0˙1 ˙2+ g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(6)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(7)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(8)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(9)

Reference R-R D3 Conclusion and Future

Poisson Limit

L(1)NS−NS ≡ −1 2φ2+1

2αβFαβ0 φ +1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

φ = F010 .

L(2)NS−NS = −1

2F2˙1 ˙2+ 1

2αβFαβ0 F˙1 ˙2+1

2Fα ˙00µF00α ˙µ− 1

2H˙1 ˙2H˙1 ˙2.

µ˙



F˙1 ˙2− F010



= 0.

(10)

Reference R-R D3 Conclusion and Future

Poisson Limit

L(1)NS−NS ≡ −1 2φ2+1

2αβFαβ0 φ +1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

φ = F010 .

L(2)NS−NS = −1

2F2˙1 ˙2+ 1

2αβFαβ0 F˙1 ˙2+1

2Fα ˙00µF00α ˙µ− 1

2H˙1 ˙2H˙1 ˙2.

µ˙



F˙1 ˙2− F010



= 0.

(11)

Reference R-R D3 Conclusion and Future

Poisson Limit

L(1)NS−NS ≡ −1 2φ2+1

2αβFαβ0 φ +1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

φ = F010 .

L(2)NS−NS = −1

2F2˙1 ˙2+1

2αβFαβ0 F˙1 ˙2+1

2Fα ˙00µF00α ˙µ− 1

2H˙1 ˙2H˙1 ˙2.

µ˙



F˙1 ˙2− F010



= 0.

(12)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate out aα0, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(13)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate out aα0, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(14)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate outa0α, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(15)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate outa0α, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(16)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(17)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(18)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ.

Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(19)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(20)

Reference R-R D3 Conclusion and Future

Coupling Constant

LNS−NS ≡ 1

gG0 2 h

−1

4Fαβ0 F0αβ−1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙νi , where gG0 is the gauge coupling.

bµ˙ →gG0 2bµ˙, Bαµ˙ →gG0 2Bαµ˙, aµ˙ →gG0 2aµ˙, aα →gG0 2aα.

(21)

Reference R-R D3 Conclusion and Future

Coupling Constant

LNS−NS ≡ 1

gG0 2 h

−1

4Fαβ0 F0αβ−1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙νi , where gG0 is the gauge coupling.

bµ˙ →gG0 2bµ˙, Bαµ˙ →gG0 2Bαµ˙, aµ˙ →gG0 2aµ˙, aα →gG0 2aα.

(22)

Reference R-R D3 Conclusion and Future

Coupling Constant

LRR ≡ 1 gG2

h−1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν + 1

2θαβFαβi , but with the gauge coupling gG and noncommutativity parameter θ defined by

gG ≡ 1 gG0 , θ≡gG0 2θ0,

and with all the coupling constants g replaced by θ.

(23)

Reference R-R D3 Conclusion and Future

Coupling Constant

Notice that the need of two independent parameters (gG0 , θ0) or (gG, θ) can be seen only if higher order terms are included. At the lowest order, we can scale the gauge fields so that the R-R action has

gG = gG0 and θ = θ0.

(24)

Reference R-R D3 Conclusion and Future

Double Scaling Limit

The double scaling limit of NS-NS is:

`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

The double scaling limit of R-R is:

`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.

(25)

Reference R-R D3 Conclusion and Future

Double Scaling Limit

The double scaling limit of NS-NS is:

`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

The double scaling limit of R-R is:

`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.

(26)

Reference R-R D3 Conclusion and Future

Double Scaling Limit

The double scaling limit of NS-NS is:

`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

The double scaling limit of R-R is:

`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.

(27)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

FAB0 ≡ FAB0 + [a0A, aB0 ]. [A, B]≡ A ∗ B − B ∗ A.

A ∗ B ≡ A expg µ ˙˙ν←−

µ˙

→∂ν˙

2

 B.

F0˙1 ˙2 = H˙1 ˙2, Z

d4x 1

2αβFαβ0 F˙1 ˙2 = Z

d4x 1

2gαβFαβ,

βαµ ˙˙νF0β ˙ν = Fα ˙µ.

(28)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

FAB0 ≡ FAB0 + [a0A, aB0 ]. [A, B]≡ A ∗ B − B ∗ A.

A ∗ B ≡ A expg µ ˙˙ν←−

µ˙

→∂ν˙

2

 B.

F0˙1 ˙2 = H˙1 ˙2, Z

d4x 1

2αβFαβ0 F˙1 ˙2 = Z

d4x 1

2gαβFαβ,

βαµ ˙˙νF0β ˙ν = Fα ˙µ.

(29)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

H˙1 ˙2 = H˙1 ˙2+ [b˙1, b˙2], F˙1 ˙2 = F˙1 ˙2,

αβFβ ˙µ = −



αbµ˙− g {∂ρ˙Xµ˙, ˆBαρ˙}∗∗

 ,

Fαβ = Fαβ + g [−Fα ˙µβµ˙ + Fβ ˙µαµ˙] + g2Fµ ˙˙ν{ ˆBαµ˙, ˆBβν˙}∗∗.

(A ∗ ∗B) ≡ Aexp(g 

µ1 ˙ν1˙

µ1˙

−→ν1˙

2 ) − 1

g µ˙2ν˙2←−

µ˙2−→

ν˙2 B as

{A, B}∗∗≡ (A ∗ ∗B) + (B ∗ ∗A).

(30)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

H˙1 ˙2 = H˙1 ˙2+ [b˙1, b˙2], F˙1 ˙2 = F˙1 ˙2,

αβFβ ˙µ = −



αbµ˙− g {∂ρ˙Xµ˙, ˆBαρ˙}∗∗

 ,

Fαβ = Fαβ + g [−Fα ˙µβµ˙ + Fβ ˙µαµ˙] + g2Fµ ˙˙ν{ ˆBαµ˙, ˆBβν˙}∗∗.

(A ∗ ∗B) ≡ Aexp(g 

µ1 ˙ν1˙

µ1˙

−→ν1˙

2 ) − 1

g µ˙2ν˙2←−

µ˙2−→

ν˙2 B as

{A, B}∗∗≡ (A ∗ ∗B) + (B ∗ ∗A).

(31)

Reference R-R D3 Conclusion and Future

Gauge Algebra and Closedness

Z

{A, {B, C }∗∗}∗∗= Z

{{A, B}∗∗, C }∗∗,

although it is not associative without integration.

g µ ˙˙ν{∂µ˙f , ∂ν˙g }∗∗= [f , g ].

(32)

Reference R-R D3 Conclusion and Future

Gauge Algebra and Closedness

Z

{A, {B, C }∗∗}∗∗= Z

{{A, B}∗∗, C }∗∗,

although it is not associative without integration.

g µ ˙˙ν{∂µ˙f , ∂ν˙g }∗∗= [f , g ].

(33)

Reference R-R D3 Conclusion and Future

Conclusion and Future

We extend S-duality toinfinite order. We also find

non-commutative R-R D3-brane beyond Poisson. The gauge algebra of this theory is also extended to all orders.

DBI ?

(34)

Reference R-R D3 Conclusion and Future

Conclusion and Future

We extend S-duality toinfinite order. We also find

non-commutative R-R D3-brane beyond Poisson. The gauge algebra of this theory is also extended to all orders.

DBI ?

參考文獻

相關文件

而利用 row vectors 的方法, 由於可以化為 reduced echelon form, 而 basis 是由此 reduced echelon form 中的 nonzero vectors 所組成, 所以雖然和來的 spanning

In this paper, we have shown that how to construct complementarity functions for the circular cone complementarity problem, and have proposed four classes of merit func- tions for

We point out that extending the concepts of r-convex and quasi-convex functions to the setting associated with second-order cone, which be- longs to symmetric cones, is not easy

104 As shown in Figure 5, spin-restricted TAO- B3LYP and TAO-B3LYP-D3 (with a θ between 50 and 70 mhartree), TAO-PBE0 (with a θ between 60 and 80 mhartree), and TAO-BHHLYP (with a

We compare the results of analytical and numerical studies of lattice 2D quantum gravity, where the internal quantum metric is described by random (dynamical)

2 Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan!. ⇤ Author to whom correspondence should

Low temperature High temperature YM theory confinement deconfinement D4 brane model solitonic D4 localized D3

MASS::lda(Y~.,data) Linear discriminant analysis MASS::qda(Y~.,data) Quadratic Discriminant Analysis class::knn(X,X,Y,k,prob) k-Nearest Neighbour(X 為變數資料;Y 為分類)