• 沒有找到結果。

From NS-NS D3 to R-R D3

N/A
N/A
Protected

Academic year: 2022

Share "From NS-NS D3 to R-R D3"

Copied!
34
0
0

加載中.... (立即查看全文)

全文

(1)

Reference R-R D3 Conclusion and Future

S-Duality for D3-Brane in NS-NS and R-R Backgrounds

Chen-Te Ma Collaborator: Pei-Ming Ho

National Taiwan University

arXiv:1311.3393 [hep-th]

January 17, 2014

(2)

Reference R-R D3 Conclusion and Future

Reference

P. -M. Ho and Y. Matsuo, M5 from M2, JHEP 0806 (2008) 105 [arXiv:0804.3629 [hep-th]].

P. -M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 0808 (2008) 014 [arXiv:0805.2898 [hep-th]].

P. -M. Ho and C. -H. Yeh, D-brane in R-R Field Background, JHEP 1103 (2011) 143 [arXiv:1101.4054 [hep-th]].

P. -M. Ho and C. -T. Ma, Effective Action for Dp-Brane in Large RR (p-1)-Form Background, JHEP 1305 (2013) 056 [arXiv:1302.6919 [hep-th]].

P. -M. Ho and C. -T. Ma, S-Duality for D3-Brane in NS-NS and R-R Backgrounds, arXiv:1311.3393 [hep-th].

(3)

Reference R-R D3 Conclusion and Future

From NS-NS D3 to R-R D3

R-R D4 M5

NS-NS D4 D3

(4)

Reference R-R D3 Conclusion and Future

From NS-NS D3 to R-R D3

R-R D3 D3

NS-NS D3

Field Redefinition, …

(5)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2 = F0˙1 ˙2+ g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(6)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(7)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(8)

Reference R-R D3 Conclusion and Future

Poisson Limit

LNS−NS ≡ −1

4Fαβ0 F0αβ− 1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙ν. FAB0 ≡ FAB0 + g {a0A, a0B}.

bµ˙ ≡ µ ˙˙νa0ν˙. F0˙1 ˙2= F˙1 ˙20 + g {a0˙1, a0˙2} = H˙1 ˙2.

Fα ˙00µ≡ αβF0β ˙νν ˙˙µ= αβ



βbµ˙− Bβ ˙νVν ˙˙µ

 .

LNS−NS = −1

4Fαβ0 F0αβ+1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

(9)

Reference R-R D3 Conclusion and Future

Poisson Limit

L(1)NS−NS ≡ −1 2φ2+1

2αβFαβ0 φ +1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

φ = F010 .

L(2)NS−NS = −1

2F2˙1 ˙2+ 1

2αβFαβ0 F˙1 ˙2+1

2Fα ˙00µF00α ˙µ− 1

2H˙1 ˙2H˙1 ˙2.

µ˙



F˙1 ˙2− F010



= 0.

(10)

Reference R-R D3 Conclusion and Future

Poisson Limit

L(1)NS−NS ≡ −1 2φ2+1

2αβFαβ0 φ +1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

φ = F010 .

L(2)NS−NS = −1

2F2˙1 ˙2+ 1

2αβFαβ0 F˙1 ˙2+1

2Fα ˙00µF00α ˙µ− 1

2H˙1 ˙2H˙1 ˙2.

µ˙



F˙1 ˙2− F010



= 0.

(11)

Reference R-R D3 Conclusion and Future

Poisson Limit

L(1)NS−NS ≡ −1 2φ2+1

2αβFαβ0 φ +1

2Fα ˙00µF00α ˙µ−1

2H˙1 ˙2H˙1 ˙2.

φ = F010 .

L(2)NS−NS = −1

2F2˙1 ˙2+1

2αβFαβ0 F˙1 ˙2+1

2Fα ˙00µF00α ˙µ− 1

2H˙1 ˙2H˙1 ˙2.

µ˙



F˙1 ˙2− F010



= 0.

(12)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate out aα0, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(13)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate out aα0, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(14)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate outa0α, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(15)

Reference R-R D3 Conclusion and Future

Poisson Limit

F010 F˙1 ˙2 = F010 F˙1 ˙2+ {a00, a01}F˙1 ˙2

= αββaµ˙Bαµ˙ + αβF˙1 ˙2Bα˙1Bβ˙2+ total derivatives.

αβfβ ˙µ[ ˘Bαµ˙− µ ˙˙νν˙a0α].

If we integrate outa0α, we getµ ˙˙νν˙fβ ˙µ= 0. It implies that locally fβ ˙µ= −∂µ˙aβ for some field aβ.

−αβµ˙aβαµ˙.

(16)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(17)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(18)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ.

Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(19)

Reference R-R D3 Conclusion and Future

Poisson Limit

We can now easily integrate out ˘Bαµ˙. The result is equivalent to replacing ˘Bαµ˙ by the solution of its equation of motion.

F010 F˙1 ˙2 → 1

2gαβFαβ Fα ˙00µ= Fα ˙µ.

LRR = −1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν+ 1

2gαβFαβ. Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.

(20)

Reference R-R D3 Conclusion and Future

Coupling Constant

LNS−NS ≡ 1

gG0 2 h

−1

4Fαβ0 F0αβ−1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙νi , where gG0 is the gauge coupling.

bµ˙ →gG0 2bµ˙, Bαµ˙ →gG0 2Bαµ˙, aµ˙ →gG0 2aµ˙, aα →gG0 2aα.

(21)

Reference R-R D3 Conclusion and Future

Coupling Constant

LNS−NS ≡ 1

gG0 2 h

−1

4Fαβ0 F0αβ−1

2Fα ˙0µF0α ˙µ−1

4Fµ ˙0˙νF0 ˙µ ˙νi , where gG0 is the gauge coupling.

bµ˙ →gG0 2bµ˙, Bαµ˙ →gG0 2Bαµ˙, aµ˙ →gG0 2aµ˙, aα →gG0 2aα.

(22)

Reference R-R D3 Conclusion and Future

Coupling Constant

LRR ≡ 1 gG2

h−1

2H2˙1 ˙2+1

2Fα ˙µFα ˙µ−1

4Fµ ˙˙νFµ ˙˙ν + 1

2θαβFαβi , but with the gauge coupling gG and noncommutativity parameter θ defined by

gG ≡ 1 gG0 , θ≡gG0 2θ0,

and with all the coupling constants g replaced by θ.

(23)

Reference R-R D3 Conclusion and Future

Coupling Constant

Notice that the need of two independent parameters (gG0 , θ0) or (gG, θ) can be seen only if higher order terms are included. At the lowest order, we can scale the gauge fields so that the R-R action has

gG = gG0 and θ = θ0.

(24)

Reference R-R D3 Conclusion and Future

Double Scaling Limit

The double scaling limit of NS-NS is:

`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

The double scaling limit of R-R is:

`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.

(25)

Reference R-R D3 Conclusion and Future

Double Scaling Limit

The double scaling limit of NS-NS is:

`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

The double scaling limit of R-R is:

`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.

(26)

Reference R-R D3 Conclusion and Future

Double Scaling Limit

The double scaling limit of NS-NS is:

`s ∼ 1/4, gs ∼ 1/2, Bµ ˙0˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

The double scaling limit of R-R is:

`s ∼ 1/2, gs ∼ −1/2, Bµ ˙˙ν ∼ 1, gαβ ∼ 1, gµ ˙˙ν ∼ .

Despite the fact that the string coupling gs is large for the R-R theory when it is small for the NS-NS theory, the decoupling of the D3-brane from the bulk in the Seiberg-Witten limit ensures that its S-dual picture also has an effective world-volume theory decoupled from the bulk.

(27)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

FAB0 ≡ FAB0 + [a0A, aB0 ]. [A, B]≡ A ∗ B − B ∗ A.

A ∗ B ≡ A expg µ ˙˙ν←−

µ˙

→∂ν˙

2

 B.

F0˙1 ˙2 = H˙1 ˙2, Z

d4x 1

2αβFαβ0 F˙1 ˙2 = Z

d4x 1

2gαβFαβ,

βαµ ˙˙νF0β ˙ν = Fα ˙µ.

(28)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

FAB0 ≡ FAB0 + [a0A, aB0 ]. [A, B]≡ A ∗ B − B ∗ A.

A ∗ B ≡ A expg µ ˙˙ν←−

µ˙

→∂ν˙

2

 B.

F0˙1 ˙2 = H˙1 ˙2, Z

d4x 1

2αβFαβ0 F˙1 ˙2 = Z

d4x 1

2gαβFαβ,

βαµ ˙˙νF0β ˙ν = Fα ˙µ.

(29)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

H˙1 ˙2 = H˙1 ˙2+ [b˙1, b˙2], F˙1 ˙2 = F˙1 ˙2,

αβFβ ˙µ = −



αbµ˙− g {∂ρ˙Xµ˙, ˆBαρ˙}∗∗

 ,

Fαβ = Fαβ + g [−Fα ˙µβµ˙ + Fβ ˙µαµ˙] + g2Fµ ˙˙ν{ ˆBαµ˙, ˆBβν˙}∗∗.

(A ∗ ∗B) ≡ Aexp(g 

µ1 ˙ν1˙

µ1˙

−→ν1˙

2 ) − 1

g µ˙2ν˙2←−

µ˙2−→

ν˙2 B as

{A, B}∗∗≡ (A ∗ ∗B) + (B ∗ ∗A).

(30)

Reference R-R D3 Conclusion and Future

S-Duality to all Orders

H˙1 ˙2 = H˙1 ˙2+ [b˙1, b˙2], F˙1 ˙2 = F˙1 ˙2,

αβFβ ˙µ = −



αbµ˙− g {∂ρ˙Xµ˙, ˆBαρ˙}∗∗

 ,

Fαβ = Fαβ + g [−Fα ˙µβµ˙ + Fβ ˙µαµ˙] + g2Fµ ˙˙ν{ ˆBαµ˙, ˆBβν˙}∗∗.

(A ∗ ∗B) ≡ Aexp(g 

µ1 ˙ν1˙

µ1˙

−→ν1˙

2 ) − 1

g µ˙2ν˙2←−

µ˙2−→

ν˙2 B as

{A, B}∗∗≡ (A ∗ ∗B) + (B ∗ ∗A).

(31)

Reference R-R D3 Conclusion and Future

Gauge Algebra and Closedness

Z

{A, {B, C }∗∗}∗∗= Z

{{A, B}∗∗, C }∗∗,

although it is not associative without integration.

g µ ˙˙ν{∂µ˙f , ∂ν˙g }∗∗= [f , g ].

(32)

Reference R-R D3 Conclusion and Future

Gauge Algebra and Closedness

Z

{A, {B, C }∗∗}∗∗= Z

{{A, B}∗∗, C }∗∗,

although it is not associative without integration.

g µ ˙˙ν{∂µ˙f , ∂ν˙g }∗∗= [f , g ].

(33)

Reference R-R D3 Conclusion and Future

Conclusion and Future

We extend S-duality toinfinite order. We also find

non-commutative R-R D3-brane beyond Poisson. The gauge algebra of this theory is also extended to all orders.

DBI ?

(34)

Reference R-R D3 Conclusion and Future

Conclusion and Future

We extend S-duality toinfinite order. We also find

non-commutative R-R D3-brane beyond Poisson. The gauge algebra of this theory is also extended to all orders.

DBI ?

參考文獻

相關文件

In this report, it is shown that every Jordan s-derivation on a 2-torsion free semiprime ring is

In this report, it is shown that every Jordan s-derivation on a 2-torsion free semiprime ring is

Methods Risk factors for morbidity in 221 patients treated with curative intent were evaluated in a prospective randomized trial comparing D1 and D3 surgery for curable

The dependence of the It2 levels of the GGNMOS and GDPMOS devices on the channel width under the traditional 100-ns TLP and the proposed 500-ns (1000-ns) LP-TLP tests is shown in

The dependence of the It2 levels of GGNMOS and GDPMOS devices on the channel width under the traditional 100-ns TLP and the proposed 500-ns (1000-ns) LP-TLP tests is shown in

6 , our hierarchical models have generally better results than the corre- sponding fine-level methods since non-stationary backgrounds can be well pre-processed in coarse level..

– user level: Poisson arrival and heavy-tailed duration. – network level: TCP closed-loop feedback control and

(3) The analysis of different players’ backgrounds and their participation satisfaction has shown that there is significant difference in age, marital status, education,