• 沒有找到結果。

第三章 研究結果與討論

3.3 奈米線太陽能電池

3.3.3 不同蝕刻長度的影響

在討論不同蝕刻長度的實驗中,吾人利用5 mM 的硝酸銀與 5 M 的氫氟酸混 合溶液,在攝氏20 度下浸泡 1 分鐘以進行銀沈積。之後分別浸泡 0.1 M 過氧化氫 與5 M 氫氟酸的混合溶液 0 秒、30 秒、1 分鐘與 5 分鐘後製作成太陽能電池,並 進行電性與光學性質的量測。 圖 3-20 顯示反射率的確隨著蝕刻時間的加長而降低。

尤其是波長在300 至 400 奈米與 1000 至 1100 奈米的地方下降的幅度最大。

圖3-20 不同蝕刻時間對反射率的影響

0 10 20 30 40 50

300 500 700 900 1100

Re fl ec ta nc e (%)

Wavelength (nm)

0s

30s

1min

5min

52

由圖 3-21 可以觀察到當蝕刻時間上升,開路電壓隨著蝕刻時間的提高維持一

定的數值,顯示奈米線的長度與開路電壓的關係並不明顯。但電流密度方面隨著 蝕刻時間的上升與亦有先升後降的關係,與Huang 等人的結果類似[51]。由圖 3-22 的結果顯示蝕刻時間的加長會導致短波長的響應下降,但中與長波長的響應則是 先升後降。綜合兩者效應導致電流密度先升後降。顯示蝕刻長度在數百奈米左右 是較佳的條件。

圖3-22 不同蝕刻時間的電流密度-電壓曲線

0 5 10 15 20 25

0 0.2 0.4 0.6

Curre nt D ens it y( mA/cm

2

Voltage(V)

0s

30s 1min

5min

圖3-23 不同蝕刻時間對光譜響應的影響

54

圖3-25 多晶矽與單晶矽奈米線太陽能電池的光譜響應

56

參考文獻

1. Chapin, D.M., C.S. Fuller, and G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954. 25(5): p. 676.

2. Green, M.A., et al., Solar cell efficiency tables (version 39). Progress in Photovoltaics: Research and Applications, 2012. 20(1): p. 12-20.

3. Reference Solar Spectral Irradiance: Air Mass 1.5.

4. Ashcroft, N.W. and N.D. Mermin, Solid State Physics1976: Brooks/Cole.

5. 施敏 and 伍國珏, 半導體元件物理學. Vol. 下. 2008: 國立交通大學出版 社.

6. Terrestrial photovoltaic measurement procedures, L.R. Center, Editor 1977, NASA: Cleveland, Ohio.

7. EMERY, K.A. and C.R. OSTERWALD, Solar cell efficiency measurements.

Solar Cells, 1986. 17: p. 253-274.

8. Green, M.A., Solar cells: operating principles, technology, and system applications1982: Prentice-Hall. 274.

9. 林明獻, 矽晶圓半導體技術 2007, 台北縣: 全華圖書.

10. Huang, Z., et al., Metal-assisted chemical etching of silicon: A review.

Advanced Materials, 2011. 23(2): p. 285-308.

11. Li, X. and P.W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters, 2000. 77(16): p. 2572.

12. Peng, K., et al., Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Advanced Functional Materials, 2003. 13(2): p. 127-132.

13. Chartier, C., S. Bastide, and C. Levyclement, Metal-assisted chemical etching of silicon in HF–H2O2. Electrochimica Acta, 2008. 53(17): p. 5509-5516.

14. Benoit-Moez, C., S. Bastide, and C. Lévy-Clément, Formation of si nanowire arrays by metal-assisted chemical etching. ECS Transactions, 2008. 16(3): p.

245-252.

15. Zhang, M.-L., et al., Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Journal of Physical Chemistry C, 2008.

112: p. 4444-4450.

16. Qu, Y., et al., Electrically conductive and optically active porous silicon nanowires. Nano Letters, 2009. 9(12): p. 4539-4543.

17. Chen, C.-Y., et al., Morphological control of single-crystalline silicon nanowire arrays near room temperature. Advanced Materials, 2008. 20(20): p.

3811-3815.

18. Cheng, S.L., C.H. Chung, and H.C. Lee, A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)si substrates. Journal of The Electrochemical Society, 2008. 155(11): p.

D711-D714.

19. Peng, K., et al., Aligned single-crystalline si nanowire arrays for photovoltaic applications. Small, 2005. 1(11): p. 1062-1067.

20. Garnett, E.C. and P. Yang, Silicon nanowire radial p-n junction solar cells.

Journal of the American Chemical Society, 2008. 130: p. 9224-9225.

21. Fang, H., et al., Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology, 2008. 19(25): p. 255703.

58

22. Toor, F., et al., Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells. Applied Physics Letters, 2011. 99(10): p.

103501.

23. Yuan, H.-C., et al., Efficient black silicon solar cells with nanoporous anti-reflection made in a single-steo liquid etch, in 34th IEEE Photovoltaic Specialists Conference2009: Philadelphia, Pennsylvania

24. Hsu, W.C., et al., High-efficiency 6′′ multicrystalline black solar cells based on metal-nanoparticle-assisted chemical etching. International Journal of Photoenergy, 2012. 2012: p. 1-7.

25. Rosenzweig, W., H.K. Gummel, and F.M. Smits, Solar Cell Degradation under 1-Mev Electron Bombardment. Bell System Technical Journal, 1963. 42(2): p.

399-414.

26. Macdonald, D. and A. Liu, Recombination activity of iron-boron pairs in compensated p-type silicon. physica status solidi (b), 2010. 247(9): p.

2218-2221.

27. Macdonald, D., et al., The impact of dopant compensation on the boron-oxygen defect in p- and n-type crystalline silicon. physica status solidi (a), 2011. 208(3):

p. 559-563.

28. Macdonald, D. and L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon. Applied Physics Letters, 2004. 85(18): p. 4061.

29. Cotter, J.E., et al., P-type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells. IEEE Transactions on electron devices, 2006. 53(8): p. 1893-1901.

30. Meier, D.L., et al., Self-doping contacts and associated silicon solar cell structures, in 2nd World Conference and Exhirition on Photovoltaic Solar Energy Conversion1998: Vienna, Austria.

31. Meier, D.L., et al., Aluminum alloy back p-n junction dendritic web silicon solar cell. Solar Energy Materials & Solar Cells, 2001. 65: p. 621-627.

32. Cuevas, A., et al., Back junction solar cells on n-type multicrystalline and cz silicon wafers, in 3rd World Conference on Photovoltaic Energy Conversion2003: Osaka, Japan.

33. Ebong, A., et al., Rapid thermal processing of high efficiency n-type silicon solar cells with al back junction, in IEEE 4th World Conference on Photovoltaic Energy Conference2006: Waikoloa, Hawaii.

34. Schmiga, C., H. Nagel, and J. Schmidt, 19% efficientn-type Czochralski silicon solar cells with screen-printed aluminium-alloyed rear emitter. Progress in Photovoltaics: Research and Applications, 2006. 14(6): p. 533-539.

35. Mihailetchi, V.D., et al., 17.4% Efficiency solar cells on large area and thin n-type silicon with screen-printed aluminum-alloyed rear emitter, in 22nd European Photovoltaic Solar Energy Conference2007: Milan, Italy.

36. Suwito, D., et al., Industrially feasible rear passivation and contacting scheme for high-efficiency n-type solar cells yielding a voc of 700 mv. IEEE Transactions on electron devices, 2010. 57(8): p. 2032-2036.

37. Gong, C., et al., Screen-printed aluminum-alloyed p+ emitter on high-efficiency n-type interdigitated back-contact silicon solar cells. IEEE electron device letters, 2010. 31(6): p. 576-578.

38. Woehl, R., et al., 19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter. IEEE Transactions on electron devices, 2011. 32(3): p. 345-347.

39. Bock, R., et al., The alu+ concept: n-type silicon solar cells with surface-passivated screen-printed aluminum-alloyed rear emitter. IEEE Transactions on electron devices, 2010. 57(8): p. 1966-1971.

40. Rauer, M., et al., Effectively surface-passivated aluminium-doped p+ emitters for n-type silicon solar cells. physica status solidi (a), 2009. 207(5): p.

1249-1251.

41. Schmiga, C., M. Hermle, and S.W. Glunz, Towards 20% efficient n-type silicon solar cells with screen-printed aluminum-alloyed rear emitter, in 23rd European Photovoltaic Solar Energy Conference2008: Valencia, Spain.

42. Peng, K. and J. Zhu, Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochimica Acta, 2004. 49(16): p.

2563-2568.

43. Aberle, A.G., Surface passivation of crystalline silicon solar cells: A Review.

Progress in Photovoltaics: Research and Applications, 2000. 8: p. 473-487.

44. Fukata, N., et al., Hydrogen passivation of P donors and defects in P-doped silicon nanowires synthesized by laser ablation. Physica B: Condensed Matter, 2007. 401-402: p. 523-526.

45. Guo, C.-S., et al., Surface Passivation and Transfer Doping of Silicon Nanowires. Angewandte Chemie International Edition, 2009. 48(52): p.

9896-9900.

46. Swain, B.S., B.P. Swain, and N.M. Hwang, Chemical surface passivation of silicon nanowires grown by APCVD. Current Applied Physics, 2010. 10(3): p.

S439-S442.

47. Sun, X., et al., Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Applied Surface Science, 2011. 257(9): p. 3861-3866.

48. Kim, D.R., et al., Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization. Nano Letters, 2011. 11(7): p. 2704-2708.

49. Rohatgi, A., et al., Comprehensive study of rapid, low-cost silicon surface passivation technologies. IEEE Transactions on electron devices, 2000. 47(5): p.

987-993.

50. Li, H., et al., Influence of nanowires length on performance of crystalline silicon solar cell. Applied Physics Letters, 2011. 98(15): p. 151116.

51. Huang, B.-R., et al., A simple and low-cost technique for silicon nanowire arrays based solar cells. Solar Energy Materials and Solar Cells, 2012. 98: p.

357-362.

相關文件