• 沒有找到結果。

使用 N-6-benzyladenine、kinetin 及 2-isopentenyladenine 調控蝴

第二章、 植物生長物質在蝴蝶蘭的生長與開花上之應用

第三節、 使用 N-6-benzyladenine、kinetin 及 2-isopentenyladenine 調控蝴

前言

由第二節的試驗結果,我們得知,全株噴灑N-6-benzyladenine(BA),對不同 蝴蝶蘭品系之抽梗率及開花品質造成不同的影響,使用之濃度、時期及植株照顧 方式不同,也會有很大之差異。Phalaenopsis Tai Lin Redangel ‘Queen’栽培種,在 涼溫處理第一天全株噴灑BA,其每株花朵數在 0-150 mg·L-1範圍內,隨BA 濃度 增加而增加。

在 Phalalenopsis Sogo Yukidian ‘V3’栽培種上,全株噴灑 150 mg·L-1BA,可使 得其開花時間由108 天提早至 98 天,其第十四週時之花梗數由每株 1.3 梗增加至 2.0 梗,總花朵數亦由每株 10.1 朵增加至每株 12.1 朵。但如使用不當,亦會使得 Phalaenopsis Luchia Pink ‘244’產生畸形花梗。

在本節試驗中,我們選取了N-6-benzyladenine(BA)、kinetin(kin) 及 2- isopentenyladenine(2-iP)等三種不同種類的 cytokinin,各三個不同濃度,探討其分 別在涼溫處理第一天及第一朵花苞大於0.2 cm 時,全株葉面噴灑對不同種類蝴蝶 蘭開花品質之影響。

材料與方法

選取的蝴蝶蘭大白花商業栽培種 Phalaenopsis Sogo Yukidian 'V3’ 及大紅花商 業栽培種 Phalaenopsis Tai Lin Redangel ‘V31’。種植於 10.5 cm 盆以水苔為栽培介 質之6 片葉大(約出瓶 16 個月,葉片展開 25-30cm)植株。試驗植株栽種於 28 /23 oC 日/夜溫、平均光照 300 µmol·m-2·s-1(正午約 400 µmol·m-2·s-1),每日光照時間 12 小 時的溫室環境。植株每週以0.2 g·L-1及0.5 g·L-1之Peters (20N-8.6P-16.6K)水溶性 肥料(Scotts, Marysville, Ohio)交替灌溉。植株於 2006 年 9 月 22 日移入涼溫處理溫 室(26/18 oC 日/夜溫、平均光照 500 µmol·m-2·s-1每日光照時間約12 小時),分別於 第1 天及第一朵花苞達到 0.2 cm 時,各以添加 0.05% Tween 20(Sigma Chemical Co., St. Louis),數個不同濃度之 N-6-benzyladenin (BA)、 2- isopentenyladenine (2-ip)(各 50、100、150 mg·L-1 )及 kinetin (100、200、300 mg·L-1) (Sigma Chemical Co., St.

Louis),於下午 4 時全株噴灑一次,每株約 10 mL,直至葉面完全濕潤。於第十四 週紀錄開花日期、花梗及花朵數、花朵大小及花期時間。花期長短以第一朵花苞 長成到花開凋謝期間為紀錄。紀錄後以randomized complete block design (RCBD) 和least significant difference (LSD)統計分析法比較各生長素對花梗數及開花品質 的影響。每處理8 重複,每重覆 8 株。

結果與討論

V3 在經過低溫處理後第一天,全株噴灑 50-150 mg·L-1 BA 可增加花梗數由 1 變成2,也增加花朵數每株由 8.4 朵變成 12.1 朵。此結果與之前的研究相似(Wu 和 Chang,2009)。同樣條件下,噴灑 200 mg·L-1 kin 和 50 mg·L-1 2-iP 也能增加花梗數 每株從1 變成 1.5(200 mg·L-1 kin);花朵數由 8.4 朵增到 10.5 朵 (50 mg·L-1 2-iP) (表 2-5)。在噴灑 200 mg·L-1 kin 的情況下,花朵數在統計上雖未到達顯著性差異,但 在商業產品考量下,花朵數由8.4 朵增到 10.5 朵在觀賞及售價上有很明顯的差別。

在第一朵花苞長至 0.2 cm 時對植株噴灑 100-150 mg·L-1 BA,發現 V3 品系蝴 蝶蘭花朵數由8.4 增到 10.5,且花期由 125.9 天增長至 134.4 天。以此為基準比較,

其他生長素處理對植株皆未達顯著性差異。結果發現到BA 是對蝴蝶蘭 V3 品系影 響最大的生長素(表 2-5)。而在低溫處理後第一天對植株噴灑 200 mg·L-1 kin 也能增 加花梗數,但若想達到與BA 相同效果,則可能要再提高濃度。

對蝴蝶蘭 V31 品系,只有在花苞達到 0.2 cm 時對植株噴灑 150 mg·L-1 BA 能 增加花朵數由8.3 變成 9.6。而在冷處理後第一天噴灑 150 mg·L-1 BA、100 或 150 mg·L-1 2-iP 或是在花苞達到 0.2 cm 時噴灑 50 mg·L-1 BA 時,其花期皆比對照組長。

但若是在花苞達到0.2 cm 時噴灑 150 mg·L-1 BA 則會降低花期(表 2-6)。

雖然涼溫處理後第一天噴灑150 mg·L-1 BA 對 V31 花梗及花朵數沒有顯著性改 變,但在商業上,花梗數由1 變成 1.4 與花朵數由 8.3 朵成 9.5 朵已有顯著性視覺 觀賞上的差異(表 2-5、2-6)。

結論

本研究中,涼溫處理後第一天,除了BA 之外,對 V3 植株葉面施肥與 200 mg·L-1 kin 也能增加其花梗數由 1 變成 1.5,然而花朵數未達統計差異。但在商業上,每 植株花朵數由8.4 增至 10.4 則有了 1 元美金的價差。生長素 kin 可能適用於商業栽 種,但欲達到與BA 同樣功效,則可能需增加其施用濃度到 300 mg·L-1以上。

對V31 品系而言,花梗及花朵數在各處理下未達顯著性差異。花期長度在第 一朵花苞大於0.2 cm 時噴灑 150 mg·L-1 BA 處理下,比對照組更短。這可能顯示在 第一朵花苞大於0.2 cm 時噴灑 150 mg·L-1或更高濃度BA 的處理,並非對所有蝴 蝶蘭品系是無害的。而比較花梗及花朵數,在涼溫處理後第一天及花苞達0.2 cm 時各噴灑150 mg·L-1 BA,與只在涼溫處理後一日噴灑一次,並沒有統計上的差異。

由試驗之結果,我們大致可了解,不同種類、不同濃度的cytokinins,在不同 的時期施用,對於不同的蝴蝶蘭栽培種開花結果之促進略有差異。在本試驗設計 的濃度及施用時期條件下,無論是以BA、kin 或是 2-iP 進行處理,大多可獲得開 花時間提早,花梗數、花朵數增加及花朵壽命增加之結果,且對於花朵品質無任 何不良之負面影響,將來應有實際應用於產業界之可能。

參考文獻

李哖. 1991. 蝴蝶蘭的幼年性. 園藝作物產期調節研討會專刊Ⅱ. 77-86.

李哖、李嘉慧. 1996. 蝴蝶蘭花芽引誘和花序發育之碳水化合物變化. 中國園藝 42:

262-275.

李明治. 2001. 蘭菌(絲核菌)之生理、菌種生產及其對台灣金線連生長之影響. 台大 園藝學研究所碩士論文.

林育如. 1994. 光、溫度與生長調節劑對蝴蝶蘭生長開花之影響. 台大園藝學研究 所碩士論文.

林育如、李哖. 1998. 蝴蝶蘭涼溫催花前後之光需求. 中國園藝 44 : 463-478.

林育如. 2002. 蝴蝶蘭腋芽發育與開花調控關係之研究. 國立臺灣大學園藝學研究 所博士論文.

周玲勤. 2004. 台灣金線連、彩葉蘭和其 F1 雜交種之菌根生理與栽培. 國立台灣大 學園藝學研究所博士論文.

蔡靜怡. 1997. 蘭菌及溫度對台灣金線連生長之影響. 國立台灣大學園藝學研究所 碩士論文.

Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214.

Chen, W. S., H. W. Chang, W. H. Chen and Y. S. Liu. 1997. Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature.

HortScience 32:1069-1073.

Chen, W. S., H. Y. Liu, Z. H. Liu, L. Yang and W. H. Chen. 1994. Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis.

Physiol. Plant. 90:391-395.

Chou, C. C., W. S. Chen, K. L. Huang, H. C. Yu and L. J. Liao. 2000. Changs in cytokinin leavls of Phalaenopsis Leaves at high temperature. Plant Physiol.

Biochem. 38:309-314.

Ho, F. W. and L. Yang. 1990. Effects of plant growth regulators on the growth and flowering of Phalaenopsis. Annu. Rep. –Taiwan Sugar Res. 1989-1990:17-18.

Satochi, K., H. Hamotsu, I. Kazuo, and K. Masaju. 1997. Effect of light condition and GA3 application on development of axillary buds during cooling treatment in Phalaenopsis. J. Japan. Soc. Hort. Sci. 66:581-585.

Wang, Y. T. and T. Y. Hsu. 1994. Flowering and growth of Phalaenopsis orchids following growth retardant applications. HortScience 29:285-28

Wang, Y. T. 1995. Gibberellic acid on Phalaenopsis. Amer. Orchid Soc. Bul. 745.

Wang, Y.T., W. T. Tsai, and T.E. Dai. 2006. Heavy shading – an effective, low-cost alternative to high temperatures for inhibiting spiking in Phalaenopsis. Proc.

Taiwan Intl. Orchid Symp. 164-173.

Wu, P. H. And D. C. N. Chang. 2009. The use of N-6-benzyladenine to regulate flowering of Phalaenopsis orchids. HortTechnology. 19: 200-203.

表2-5、蝴蝶蘭 Sogo Yukidian 'V3’ 在不同時間點(涼溫處理後一日及第一花苞達到 0.2cm 時) 施用不同濃的 N-6-benzyladenin (BA)、kinetin (kin)及 2-

isopentenyladenine (2-iP)之花梗數及花朵品質。

Table 2-5. Flower spike count and flower quality of Phalaenopsis Sogo Yukidian 'V3’, as affected by the spraying of various concentrations of N-6-benzyladenin (BA), kinetin (kin) or 2- isopentenyladenine (2-iP) on the day 1 of low temperature treatment or the first flower bud reached 0.2 cmz.

Treatmenty

100 104.9b 1.6ab 63.5bc 11.1a 10.6de 126.9a

BA (1)

150 105.5b 2.0a 57.1c 12.1a 10.4e 126.8a

100 108.3ab 1.1cd 67.9ab 8.9b 11.9ab 125.9a

200 104.3bc 1.5bc 63.3bc 10.4ab 11.6abc 127.8a

kin(1)

300 109.8a 1.3bcd 71.9ab 10.0ab 12.0a 129.8a

50 105.3b 1.3bcd 73.1a 10.5ab 11.7abc 129.4a

100 106.3ab 1.1cd 67.0ab 8.5b 11.6abc 130.1a

2-iP(1)

150 100.4c 1.0d 71.6ab 8.5b 12.1a 132.5a

Control 0 107.3de 1.0a 71.1bc 8.4bc 11.2b 125.9b

50 113.4ab 1.0a 76.5a 9.3b 11.9a 127.0ab

100 115.4a 1.3b 72.5ab 10.5a 11.8ab 133.4a

BA (2)

50 109.1cde 1.1ab 71.1bc 9.0bc 12.2a 131.8ab

100 111.3bc 1.1ab 71.8abc 9.3b 12.0a 129.8ab

2-iP(2)

150 108.8cde 1.0a 74.9ab 8.3bc 12.3a 130.3ab

z 8 replicates were tested for each treatment and every replicate has 1 plants.(Arrange at random from 64 plants), Mean separation within columns by least significant difference (LSD) test at P ≤ 0.05.

y(1) was sparyed at the day 1 after cool treatment. (2) was the first flower bud >0.2cm

x1 mg·L-1 = 1 ppm ; 1 cm = 0.3937 inch

表2-6、蝴蝶蘭 Tai Lin Redangel ‘V31’在不同時間點(涼溫處理後一日及第一花苞達 到0.2cm 時) 施用不同濃的 N-6-benzyladenin (BA)、kinetin (kin)及 2-

isopentenyladenine (2-iP)之花梗數及花朵品質。

Table 2-6. Flower spike count and flower quality of phalaenopsis Tai Lin Redangel

‘V31’, as affected by the spraying of various concentrations of N-6-benzyladenin (BA), kinetin (kin) or 2- isopentenyladenine (2-iP) on the day 1 of low temperature treatment or the first flower bud reached 0.2 cmz.

Treatmenty

200 108.5ab 1.0b 62.9a 8.1b 9.8ab 112.3ab

kin(1)

300 108.6ab 1.0b 65.0a 8.6ab 9.9a 106.1ab 50 107.5ab 1.0b 61.9a 8.4ab 9.9a 111.4ab 100 106.0b 1.0b 61.9a 8.4ab 9.8ab 116.5a 2-iP(1)

150 107.0ab 1.0b 66.3a 8.8ab 9.9a 115.9a

Control 0 108.9c 1.0b 61.4bc 8.3bcd 9.8bc 99.8abc

50 111.4ab 1.0b 61.4bc 8.4bcd 9.6bc 114.1a 100 112.3a 1.1a 62.9bc 8.9ab 9.5c 99.0abc BA (2)

150 109.9bc 1.0b 68.9a 9.6a 9.9abc 84.1c

100 111.3ab 1.0b 60.9bc 7.6d 9.9abc 110.4ab

200 110.3abc 1.0b 60.6bc 7.9cd 10.0ab 98.1bc kin(2)

300 109.8bc 1.0b 59.1c 8.0bcd 9.8bc 96.5bc

50 109.9bc 1.0b 63.5b 8..6bc 9.8bc 100.8ab

100 109.6bc 1.0b 60.5bc 7.9cd 10.0ab 114.0a 2-iP(2)

150 108.1c 1.0b 59.4bc 8.3bcd 10.2a 101.6ab

z 8 replicates were tested for each treatment and every replicate has 1 plants.(Arrange at random from 64 plants), Mean separation within columns by least significant difference (LSD) test at P ≤ 0.05.

y(1) was sparyed at the day 1 after cool treatment. (2) was the first flower bud >0.2cm

x1 mmg·L-1 = 1 ppm ; 1 cm = 0.3937 inch

Po-Hung Wu and Doris C.N. Chang1

ADDITIONAL INDEX WORDS. spiking percentage, flower quality, growth regulation, N-6-benzyladenine (BA), doritaenopsis

SUMMARY. Phalaenopsis orchid (Phalaenopsis hybrids) is an important potted flower around the world. Programming phalaenopsis to bloom as needed and improving flower quality are important to increasing profitability. Whole plants were sprayed with 70 mgL–1N-6-benzyladenine (BA) at dusk on days 1 and 14 after subjecting them to a 26/18 C treatment. The spiking percentage at week 4 after the start of the 26/18 C treatment of phalaenopsis Luchia Pink ‘244’ control plants was 58% ± 12% (mean ±SE), while 98% ± 4% of the BA-treated plants developed floral spikes.

The number of flower spikes in phalaenopsis Luchia Pink ‘244’ and doritaenopsis orchid (Doritaenopsis hybrids) Taisico Firebird ‘OX’ increased from 1 to 1.2 flower spikes per plant and from 1.6 to 2 flower spikes per plant at the end of week 14, respectively. When whole plants were sprayed with 150 mgL–1BA at dusk on day 1 of cooling, the number of flower spikes in phalaenopsis Sogo Yukidian ‘V3’

increased from 1.3 to 2 flower spikes per plant, and the flower count in phalaenopsis Tai Lin Redangel ‘Queen’ increased from 10.4 to 14 flowers at the end of week 20.

However, the flower longevity of phalaenopsis Sogo Yukidian ‘V3’ and phalae-nopsis Tai Lin Redangel ‘Queen’ was not affected. However, phalaephalae-nopsis Luchia Pink ‘244’ sprayed with 70 mgL–1BA on days 1 and 14 resulted in deformed flower spikes. It is recommended that 14 to 16 weeks before specific festivals, the phalaenopsis orchids should be put into 26/18 C and BA treatments (100–150 mgL–1) at day 1 for commercial phalaenopsis orchids production. However, perhaps BA is not effective for all cultivars.

P

halaenopsis is the most impor-tant potted orchid around the world, with a fast-growing mar-ket (Wang, 2004). It is a monopodial epiphytic orchid, having indetermi-nate inflorescences. Phalaenopsis spike (bolt) and bloom under condi-tions of proper temperature and light after the plants have matured (Lee and Lin, 1984; Wang, 1995). The potential flower spikes usually emerge at the axils of the third and/or fourth basipetal mature leaf (Lee and Lee, 1996).

Phalaenopsis can only be sold on the retail market when in bloom. The ability of phalaenopsis to spike and bloom under inductive environmen-tal conditions is highly correlated with its leaf size, but there is a sig-nificant difference among various hybrids (Lee, 1991). It is important to program phalaenopsis to bloom when the market demand is the great-est, such as at Chinese New Year,

Valentine’s Day, Mother’s Day, Christmas, etc.

The period from spiking to first open bloom is unaffected by factors such as lighting, photoperiodism, and fertilizer when the temperature is held constant (Lin and Lee, 1998; Wang and Hsu, 1994). Because spiking precedes flowering in phalaenopsis, controlling spiking becomes the focus for the effective control of the flower-ing time of this orchid. The applica-tion of plant growth substance may be one solution to controlling spiking (Wang, 1995). Phalaenopsis is unable to spike and bloom at high temper-atures (Lee and Lin, 1984; Wang et al., 2006). If a spiked phalaenopsis plant is moved to a high-temperature environment (30 C) before its inflor-escence differentiation, it will not

tion in the developing flower stem (Chen et al., 1994; Chou et al., 2000). Using plant growth substan-ces such as GA3or N-6-benzyladenine (BA) separately at high temperatures failed to induce phalaenopsis to spike or bloom (Chen et al., 1994, 1997;

Kubota et al., 1997). However, Chen et al. (1994) injection of GA3 into phalaenopsis plants that had already developed 3- to 5-cm-long floral spikes initialed at a cooler temper-ature resulted in flowering at high temperature (30 C).

At lower temperatures (25/20

C), treating phalaenopsis with GA3

resulted in long flower spikes and higher flower count. However, the petals are relatively thin, and lopsided flowers are easily generated (Lin, 1994). Spraying phalaenopsis with BA at a low temperature resulted in more flowers and flower spikes (Ho and Yang, 1990; Lin, 1994). Spraying BA on phalaenopsis when the first visible flower bud occurs led to more flowers with larger flower diameters and relatively thicker petals. How-ever, the percentage of flower bud abortion increased (Lin, 1994).

The objective of this study was to investigate the feasibility of using BA in the regulation of phalaenopsis flowering to increase the spiking per-centage, the spike, and flower count of phalaenopsis.

Materials and methods

EXPT. 1: EFF ECT OF BA ON SPIKING PERCENTAGE AND FLOWER COUNT. Plants of two commercial phalaenopsis cultivars were selected, including phalaenopsis Luchia Pink

‘244’ and doritaenopsis Taisico Fire-bird ‘OX’. Mature plants (six leaves and the leaf spread was 25–30 cm) used in this experiment were grown in 10.5-cm-diameter pots (volume of 650 mL) that were filled with Chilean

Units

To convert U.S. to SI,

multiply by U.S. unit SI unit

To convert SI to U.S., multiply by

29.5735 fl oz mL 0.0338

2.54 inch(es) cm 0.3937

7.4892 oz/gal gL–1 0.1335

1 ppm mgL–1 1

(F – 32) O 1.8 F C (1.8 · C) + 32

We thank OX ORCHIDS for providing plant materials and greenhouses during the experiment.

Department of Horticulture, National Taiwan University, No 1, Sec. 4, Roosevelt Road, 106, Taipei, Taiwan

1Corresponding author. E-mail: hyha@ntu.edu.tw.

sphagnum moss as the sole growing substrate. They were grown from 4 Mar. 2003 to 1 Sept. 2004 in a greenhouse with an average daytime temperature of 28 C, an average night temperature of 23 C, an aver-age photosynthetic photon flux (PPF) at 300 mmolm–2s–1 (maximum 400 mmolm–2s–1at noon), and a 12-h pho-toperiod. Plants were fertigated once weekly, alternating 0.2 and 0.5 gL–1 of 20N–8.6P–16.6K water-soluble fertilizer (Peters; Scotts, Marysville, OH).

On 1 Sept. 2004, plants were moved into a greenhouse regulated to 26 C day and 18 C night, with an average PPF at 500 mmolm–2s–1 (maximum 800 mmolm–2s–1at noon) and a 12-h photoperiod. Plants were fertigated weekly with 0.3 gL–110N–

12.9P–16.6K water-soluble fertilizer (Peters), and they were sprayed biweekly with 1 gL–1 10N–12.9P–

12.9P–16.6K water-soluble fertilizer (Peters), and they were sprayed biweekly with 1 gL–1 10N–12.9P–

相關文件