• 沒有找到結果。

彈性完全塑性模式

在文檔中 摘摘摘摘 要要要要 (頁 80-101)

第四章 無支撐隧道開挖之地盤反應行為模擬分析

4.4 有限元素法模擬結果

4.4.2 彈性完全塑性模式

考慮岩體材料為彈塑性模式時,受到開挖擾動,圍岩應力逐漸釋放至彈性 極限範圍之圍束損失(λ=0→λe),最後應力繼續釋放至 λ=1.0 時,產生一最終 位移量。如圖 4-6 所示,隨著徑向應力的減少,正規化後之徑向位移量值亦隨著 增加,但開挖初期,岩體尚處於彈性行為階段,當達彈性極限極限之圍束損失 時,則開始進入塑性行為模式,地盤反應曲線即由線性彈性轉為非線性且非彈 性之行為,並隨著材料性質之不同而有所不同。

依不同的凝聚力及內摩擦角,如表 4-1 與圖 4-7 而得到有限元素法程式模擬 計算得出之不同凝聚力對應各內摩擦角時之 λe值,由表可知 λe值隨著 c、φ值的 增加而增加。而由圖 4-8 亦可看出,其徑向位移量之趨勢與新外顯法所得結果相 符。

4.5 新外顯法 新外顯法 新外顯法 新外顯法與有限元素法之 與有限元素法之 與有限元素法之分析結果 與有限元素法之 分析結果 分析結果比較 分析結果 比較 比較 比較

兩者分析模式在無支撐隧道開挖之模擬中,所得出之結果皆有著相同的趨 勢傾向。如圖 4-9 至圖 4-12 所示,彈性模式中,分別以新外顯法與有限元素法 模擬,岩體參數之波松比ν分別假設0.1、0.25、0.3互相比較後,皆呈線性直線的 情況;且分別假設彈性模數 E 為 300 MPa、1000 MPa、4000 MPa 可看出,亦並 不影響隧道開挖後之地盤反應曲線。

由圖 4-13 至圖 4-32 可知,兩種模擬方式皆達 λe後開始產生非線性之塑性行 為,表示周圍岩軆已經發生塑性破壞,岩體已有體積伸張的現象,進而產生較

大的徑向位移量,其有限元素法所模擬之岩體,於 λe之後所產生的徑向位移速 率大於新外顯法所模擬之結果,所以新外顯法模擬出之最終徑向位移量較高於 有限元素法所模擬的結果,如表 4-2 所示。

於彈性完全塑性模式中,考慮各別於不同之內摩擦角φ和凝聚力 c 之影響。

如圖 4-33 地盤反應曲線所示,在相同之內摩擦角情況下,當凝聚力越小,其所 產生之徑向位移量越大,隨著應力釋放,越早產生塑性行為。

若在相同之凝聚力下(如圖 4-34 所示),探討內摩擦角之影響時,在開挖 初期,不同內摩擦角之線段皆為直線且重疊,此時材料尚為彈性行為。隨著開 挖前進,開始產生塑性行為,而由直線變為曲線。當內摩擦角越小,塑性行為 也相同的越早發生。

由表 4-3 的整理可看出,在彈性完全塑性模式中,c、φ值影響著岩軆塑性範 圍(Rp)的大小以及彈性極限之範圍。彈性極限之圍束損失會隨著凝聚力與內 摩擦角之增加而增加,岩體條件亦越接近彈性材料之理想行為。

於彈性模式下,有限元素法與新外顯法模擬分析無支撐隧道之結果顯示,

兩種分析方式可合理且相符合的模擬岩體收斂與應力釋放情形。但當岩體材料 為彈性完全塑性模式時,當凝聚力 c 值固定,內摩擦角越大,兩種模擬方式所 得出的最終徑向位移量差越大;且在相同岩體參數條件下,新外顯法將比有限 元素法產生較大之最終徑向位移量。

表 4-1 新外顯法與有限元素法之圍束損失彈性極限值 λe之比較 c=0.1 c=0.2 c=0.3 c=0.4 λe

NEM FEM NEM FEM NEM FEM NEM FEM φ=10° 0.272 0.280 0.371 0.440 0.469 0.510 0.568 0.580 φ=20° 0.436 0.470 0.530 0.540 0.624 0.580 0.718 0.640 φ=30° 0.587 0.550 0.673 0.580 0.760 0.650 0.846 0.740 φ=40° 0.719 0.570 0.796 0.610 0.873 0.700 0.949 0.860 φ=50° 0.830 0.650 0.895 0.680 0.959 0.850 1.000 1.000

表 4-2 新外顯法與有限元素法模擬無支撐隧道開挖之徑向位移量之比較 c=0.1 c=0.2 c=0.3 c=0.4

R e

R(max)

U U

NEM FEM NEM FEM NEM FEM NEM FEM φ=10° 31.608 32.102 4.708 5.340 2.241 2.392 1.550 1.564 φ=20° 11.393 11.69 3.230 3.124 1.872 1.732 1.400 1.270 φ=30° 6.728 6.169 2.543 2.184 1.625 1.396 1.263 1.100 φ=40° 4.728 3.883 2.083 1.634 1.402 1.147 1.111 1.011 φ=50° 3.518 2.631 1.690 1.280 1.168 1.021 1.000 0.994

表 4-3 彈性完全塑性新外顯法與有限元素法之塑性半徑結果比較 c=0.1 c=0.2 c=0.3 c=0.4 Rp

(m) NEM FEM NEM FEM NEM FEM NEM FEM

φ=10° 37.087 37.000 14.864 14.600 9.923 9.867 7.876 7.867 φ=20° 15.214 15.000 9.424 9.333 7.465 7.467 6.478 6.533 φ=30° 9.570 9.533 7.249 7.267 6.288 6.267 5.748 5.760 φ=40° 7.279 7.333 6.175 6.200 5.600 5.680 5.348 5.360 φ=50° 6.157 6.133 5.602 5.600 5.322 5.320 5.144 5.200

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

數列1 λ=0.1

λ=0.6 λ=0.7

λ=0.8 λ=0.9

λ=1.0 λ=0.4

λ=0.5 λ=0.3

λ=0.2 λ=0.0

R 2

v

U G R

σ

GRC (unsupported tunnel) E=300 (MPa)

ν=0.25

γ=0.02 (MPa/m) R=5.2 (m) K0=1.0

R

v

σ σ

圖 4-1 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖

(彈性模式)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5 3

s=10GRC (unsupported tunnel) E=300 (MPa)

ν=0.25

γ=0.02 (MPa/m) R=5.2 (m) c=0.2 (MPa) φ=30∘

Rp=7.249 (m) K0=1.0

R 2

v

U G R

σ

λe=0.67

R v

σ σ

圖 4-2 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖

(彈性完全塑性模式)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 10 20 30 40 50 60

c=0.1 c=0.2 c=0.3 c=0.4

φ(∘) λe

圖 4-3 新外顯法圍束損失彈性極限值 λe與凝聚力 c、內摩擦角φ之關係圖

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

10 20 30 40 50

c=0.1 c=0.2 c=0.3 c=0.4

R

2

v

U G R σ

φ(∘)

圖 4-4 新外顯法模擬無支撐隧道開挖之最大徑向位移量比較圖

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

數列1 λ=0.1

λ=0.6 λ=0.7

λ=0.8 λ=0.9

λ=1.0 λ=0.4

λ=0.5 λ=0.3

λ=0.2

λ=0.0 GRC (unsupported tunnel)

E=300 (MPa) ν=0.25

γ=0.02 (MPa/m) R=5.2 (m) K0=1.0

R 2

v

U G R

σ

R

v

σ σ

圖 4-5 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖

(彈性模式)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5 3

彈塑性

λe=0.58

R 2

v

U G R

σ

GRC (unsupported tunnel) E=300 (MPa)

ν=0.25

γ=0.02 (MPa/m) R=5.2 (m) c=0.2 (MPa) φ=30∘

Rp=7.267 (m) K0=1.0

R

v

σ σ

圖 4-6 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖

(彈性完全塑性模式)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

10 20 30 40 50

c=0.1 c=0.2 c=0.3 c=0.4 λe

φ(∘)

圖 4-7 有限元素法損失彈性極限值 λe與凝聚力 c、內摩擦角φ之關係圖

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

10 20 30 40 50

c=0.1 c=0.2 c=0.3 c=0.4

R

2

v

U G R σ

φ(∘)

圖 4-8 有限元素法模擬無支撐隧道開挖之最大徑向位移量比較圖

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

n=0.1 n=0.25 n=0.3

ν

=0.1

ν

=0.25

ν

=0.3 K

0

=1.0 E=300 (Mpa)

R 2

v

U G R

σ

R

v

σ σ

圖 4-9 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖

(波松比ν影響分析)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

n=0.1 n=0.25 n=0.3

ν

=0.1

ν

=0.25

ν

=0.3

R 2

v

U G R

σ

K

0

=1.0 E=300 (Mpa)

R

v

σ σ

圖 4-10 有限元素法模擬隧道開挖無支撐地盤反應曲線圖

(波松比ν影響分析)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

n=0.1 n=0.25 n=0.3

E=300 (MPa) E=1000 (MPa) E=4000 (MPa)

R 2

v

U G R

σ

K0=1.0 ν=0.1

R

v

σ σ

圖 4-11 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖

(彈性模數 E 影響分析)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

RMR=30 RMR=50 RMR=70 K0=1.0 ν=0.1 E=300 (MPa) E=1000 (MPa) E=4000 (MPa)

R 2

v

U G R

σ

R

v

σ σ

圖 4-12 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖

(彈性模數 E 影響分析)

0 0.2 0.4 0.6 0.8 1 1.2

0 5 10 15 20 25 30 35

NEM FEM φ=10∘

c=0.1 MPa K=1.0 E=300 MPa

R

v

σ

σ

(FEM) λ

e

=0.28

(NEM) λ

e

=0.272

R

2

v

U G R σ

圖 4-13 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.1 , φ=10°)

0 0.2 0.4 0.6 0.8 1 1.2

0 2 4 6 8 10 12 14

NEM FEM φ=20∘

c=0.1 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λ

e

=0.47 (NEM) λ

e

=0.436

R

2

v

U G R σ

圖 4-14 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.1 , φ=20°)

0 0.2 0.4 0.6 0.8 1 1.2

0 1 2 3 4 5 6 7 8

NEM FEM φ=30∘

c=0.1 MPa K=1.0 E=300 MPa

R v

σ

σ

(FEM) λ

e

=0.55

(NEM) λ

e

=0.587

R

2

v

U G R σ

圖 4-15 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.1 , φ=30°)

0 0.2 0.4 0.6 0.8 1 1.2

0 1 2 3 4 5

NEM FEM φ=40∘

c=0.1 MPa K=1.0 E=300 MPa

R v

σ σ

(FEM) λ

e

=0.57 (NEM) λ

e

=0.719

R

2

v

U G R σ

圖 4-16 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.1 , φ=40°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

NEM FEM

v

r G

R U

σ

2

φ=50∘

c=0.1 MPa K=1.0 E=300 MPa

R v

σ σ

(FEM) λe=0.65

(NEM) λe=0.83

圖 4-17 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.1 , φ=50°)

0 0.2 0.4 0.6 0.8 1 1.2

0 1 2 3 4 5 6

NEM FEM φ=10∘

c=0.2 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.44 (NEM) λe=0.371

R 2

v

U G R

σ

圖 4-18 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.2 , φ=10°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5 3 3.5

NEM FEM φ=20∘

c=0.2 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.54 (NEM) λe=0.53

R 2

v

U G R

σ

圖 4-19 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.2 , φ=20°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5 3

NEM FEM φ=30∘

c=0.2 MPa K=1.0 E=300 MPa

(FEM) λe=0.58 (NEM) λe=0.673

R

v

σ σ

R 2

v

U G R

σ

圖 4-20 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.2 , φ=30°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5

NEM FEM φ=40∘

c=0.2 MPa K=1.0 E=300 MPa

(FEM) λe=0.61 (NEM) λe=0.796

R

v

σ σ

R 2

v

U G R

σ

圖 4-21 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.2 , φ=40°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

NEM FEM φ=50∘

c=0.2 MPa K=1.0 E=300 MPa

(FEM) λe=0.68 (NEM) λe=0.895

R

v

σ σ

R 2

v

U G R

σ

圖 4-22 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.2 , φ=50°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5 3

NEM FEM φ=10∘

c=0.3 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.51 (NEM) λe=0.469

R 2

v

U G R

σ

圖 4-23 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.3 , φ=10°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2

NEM FEM φ=20∘

c=0.3 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.58

(NEM) λe=0.624

R 2

v

U G R

σ

圖 4-24 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.3 , φ=20°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

NEM FEM φ=30∘

c=0.3 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.65

(NEM) λe=0.76

R 2

v

U G R

σ

圖 4-25 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.3 , φ=30°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

NEM FEM φ=40∘

c=0.3 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.7

(NEM) λe=0.873

R 2

v

U G R

σ

圖 4-26 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.3 , φ=40°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

NEM FEM φ=50∘

c=0.3 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.85

(NEM) λe=0.959

R 2

v

U G R

σ

圖 4-27 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.3 , φ=50°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

NEM FEM φ=10∘

c=0.4 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.58

(NEM) λe=0.568

R 2

v

U G R

σ

圖 4-28 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.4 , φ=10°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

NEM FEM φ=20∘

c=0.4 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.64

(NEM) λe=0.718

R 2

v

U G R

σ

圖 4-29 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.4 , φ=20°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

NEM FEM φ=30∘

c=0.4 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.74

(NEM) λe=0.846

R 2

v

U G R

σ

圖 4-30 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.4 , φ=30°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

NEM FEM φ=40∘

c=0.4 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=0.86

(NEM) λe=0.949

R 2

v

U G R

σ

圖 4-31 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.4 , φ=40°)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

NEM FEM φ=50∘

c=0.4 MPa K=1.0 E=300 MPa

R

v

σ σ

(FEM) λe=1.0

(NEM) λe=1.0

R 2

v

U G R

σ

圖 4-32 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(c=0.4 , φ=50°)

0 0.2 0.4 0.6 0.8 1 1.2

0 1 2 3 4 5 6 7 8

c=0.1 MPa (F.E.M) c=0.2 MPa (F.E.M) c=0.3 MPa (F.E.M) c=0.4 MPa (F.E.M) c=0.1 MPa (E.A.M) c=0.2 MPa (E.A.M) c=0.3 MPa (E.A.M) c=0.4 MPa (E.A.M) 彈性模式

K0=1.0 E=300 Mpa R=5.2 m

φ

=

ψ

=30∘

(FEM) (FEM) (FEM) (FEM) (NEM) (NEM) (NEM) (NEM)

R 2

v

U G R

σ

R

v

σ σ

圖 4-33 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(凝聚力 c 影響性分析)

0 0.2 0.4 0.6 0.8 1 1.2

0 5 10 15 20 25 30 35

數列1 數列1 數列1 數列1 數列1 e ee eee eeee eeeee 數列3

φ

=10˚ (FEM)

φ

=20˚ (FEM)

φ

=30˚ (FEM)

φ

=40˚ (FEM)

φ

=50˚ (FEM)

φ

=10˚ (NEM)

φ

=20˚ (NEM)

φ

=30˚ (NEM)

φ

=40˚ (NEM)

φ

=50˚ (NEM) 彈性模式 c=0.1 (MPa) K0=1.0 R=5.2 (m)

R 2

v

U G R

σ

R

v

σ σ

圖 4-34 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖

(內摩擦角φ影響性分析)

在文檔中 摘摘摘摘 要要要要 (頁 80-101)

相關文件