• 沒有找到結果。

第五章 實驗結果與問題討論

5.4 問題與討論

在[37]有討論到用二度空間的位能場模型在某些情況下,機械手臂會 因為順著位能場的方向而產生不自然的結果,這個問題在我們使用的三度 空間位能場模型依舊存在。由於物體愈靠近邊界所受的推斥力愈大,因此 我們若把兩個手臂的基座設在靠近與終點反向邊界的位置,規劃過程中有 可能發生整個手臂的扭曲變形,甚至因為被推擠太過嚴重,造成最後兩節 無法接上而使得手臂斷裂。解決方式是針對各個手臂,在計算推斥力時,

對於終點相對方向的平面所算出來的推斥力,以較少的權值相加,如圖 5.16,對於右邊的主臂而言,由於終點平面在左邊,因此主臂在對最右邊 的平面作推斥力的計算時,就可以較小的權重來計算,本篇論文均採用原 來力的五分之一,因此主臂在往左邊移動時,會以類似首節牽引拉動後面 的小節前進,而不是受到力的不當影響,造成整個手臂往中間推擠。圖中 左邊的僕臂調整則是類似主臂的計算方式,受到更改權重的平面為最左邊 的平面。

圖 5.16 解決位能場先天問題的方式,對特定平面的授與不同權重值。

在大部分的環境中,由於僕臂需要閃避主臂而調整,因此僕臂到達終 點平面時間會較主臂的到達時間晚,但仍然有可能會有僕臂先到達的情況 發生(如例三),而在這些僕臂先到達終點的例子當中,有一部分會因為僕 臂在到達後不再調整,主臂則因繼續前進而有可能與僕臂相撞的情形。解 決這種問題的方式有幾種:

1. 捨棄交錯式的規劃方法,讓主臂先規劃其路徑,到達終點之後,

再讓僕臂開始規劃。

2. 主臂先規劃前進路徑,僕臂則在主臂規劃的過程中先不前進,僅 作各節轉動調整來閃避主臂,其運動過程類似兩端固定的手臂,

在主臂規劃完成到達終點之後,僕臂開始作前進路徑規劃。

3. 利用原本的演算法先規劃完成,但僕臂到達之後,仍繼續作各節 的轉動調整,其運動過程類似兩端固定的手臂。

然而這樣的情況並不常見,因此可當作是特殊情況來處裡。

第六章 結論

本論文的目的在於對三維空間中的雙機械手臂作路徑規劃。我們所提 出的演算法,利用三度空間的廣義位能場模型,在工作空間中使障礙物對 手臂產生推斥力,不但保證手臂前進時所經過的路徑不會與障礙物或是彼 此碰撞,所規劃出來的路徑也能夠近乎平滑且連續。

相對於一般以組態空間為基礎的演算法,我們所提出的方法對於具有 高自由度的物體,並不需要花費大量的時間與資源建構組態空間,因此在 一般的環境之下,搜尋速度相當快速而且正確。

本論文利用「主僕式架構」以及「交錯式運行」來解決兩個機械手臂 的協調問題,由實驗證明,主僕式架構的確適合應用於雙機械手臂的環境 當中,透過推斥力讓僕臂在規劃路徑的過程中閃避主臂,可以讓兩個手臂 雙雙到達目的地,且透過交錯式的運行方法,在大部分的情況之下也都能 讓兩個手臂規劃完成各自的路徑。

參考文獻

[1] J.C. Latombe, “Motion planning: a journey of robots, molecules, digital actors, and other artifacts,” International Journal of Robotics Research, vol. 18, no.11, pp. 1119-1128, Nov. 1999.

[2] T. Lozano-Perez, “Spatial planning: a configuration space approach,”

IEEE Trans. on Computers, vol. C-32, no. 2, pp. 108-120, Feb.1983.

[3] R. Brooks and T. Lozano-Preze, “A subdivision algorithm in configuration space for findpath with rotation,” IEEE Trans. on Sys., Man, Cybern., vol. 15, no.2, pp. 224-233, March-April 1985.

[4] L. E. Kavraki, P. Sverstka, J. C. Latombe, and M. H. Overmars,

“Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566-580, Aug. 1996.

[5] J-H. Chuang and N. Ahuja, “An analytically tractable potential field model of free space and its application in obstacle avoidance,” IEEE Trans. on Sys., Man, Cybern., Part B: Cybernetics, vol. 28, no. 5, pp.

729-736, 1998.

[6] J-H. Chuang, “Potential-based modeling of three-dimensional workspace of the obstacle avoidance,” IEEE Trans. on Robotics and Automation, vol.

14, no. 5, pp. 778-785, 1998.

[7] Y.K. Hwang and N. Ahuja, “Gross motion planning a survey,” ACM Computer Survey, vol. 24, no. 3, pp. 219-291, 1992.

[8] P. Khosla and R. Volpe, “Superquadric artificial potentials for obstacle avoidance and approach,” Proc. IEEE Intl. Conf. Robot. And Auto., pp.

1778-1784, 1988.

[9] J-H. Chuang, C-H. Tsai, W-H. Tsai, and C-Y. Yang, “Potential-based modeling of 2-D regions using nonuniform source distribution,” IEEE Trans. on Sys., Man, Cybern., Part A: Systems and Humans, vol. 3, no. 2, pp. 197-202, 2000.

[10] K. P. Valavanis, T. Herbert, and N. C. Tsourveloudis, “Mobile robot navigation in 2-D dynamic environments using electrostatic potential fields,” IEEE Trans. on Sys., Man, Cybern., Part A: Systems and Humans, vol. 30, no. 2, pp. 187-196, 2001.

[11] C-H. Tsai, J-S. Lee, and J-H. Chuang, “Path planning of 3-D objects using a new workspace model,” IEEE Trans. on Sys., Man, Cybern., Part B: Cybernetics, vol. 31, no. 3, pp. 405-410, Aug. 2001.

[12] C. Chang, M-J Chung, and B-H Lee, “Collision Avoidance of Two

General Robot Manipulators by Minimum Delay Time,” IEEE Tran. on Sys., Man, Cybern., Vol. 24, NO. 3, pp. 517-522, MARCH 1994.

[13] K-S Hwang, M-Y Ju, Y-J Chen, “Speed Alteration Strategy for Multijoint Robots in Co-Working Environment,” IEEE Trans. on Industrial Electronics, vol. 50, no. 2, pp. 385- 393, April 2003.

[14] T. Lozano-P é rez and M. A. Wesley, “An algorithm for planning collision-free paths among polyhedral obstacles,” Communications.

ACM 22(10), pp.560-570, 1979.

[15] T. Lozano-Pérez, “Spatial planning: a configuration space approach,”

IEEE Trans. on Computers, vol. C-32, no.2, pp.108-120, Feb. 1983.

[16] T. Lozano-Pérez, “A simple motion-planning algorithm for general robot manipulator,” IEEE Journal of Robotics and Automation, vol. RA-3, no.3, pp. 224-238, June 1987.

[17] R. Brooks and T. Lozano-P é rez, “A subdivision algorithm in configuration space for findpath with rotation,” IEEE Trans. on Sys., Man, Cybern., vol. SMC-15, no.2, pp.224-233, March-April 1985.

[18] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, vol.5, no.1, pp.90-98, Spring 1986.

[19] J. C. Latombe, “Motion planning: A journey of robots, molecules, digital actors, and other artifacts,” International Journal of Robotics Research, vol.18, no.11, pp.1119-1128, Nov. 1999.

[20] J. Barraquand and J. C. Latombe, “Robot motion planning: a distributed representation approach,” International Journal of Robotics Research, vol.10, no.6, pp.628-649, Dec. 1991.

[21] T. Laliberté and C. Gosselin, “Efficient algorithms for the trajectory planning for redundant manipulators with obstacle avoidance,” Proc.

IEEE Intl. Conf. Robot. And Auto, 1994.

[22] E. Ralli and G. Hirzinger, “Fast path planning for robot manipulators using numerical potential fields in the configuration space,” Proc.

IEEE/RSJ/GI Intl. Conf. on Intelligent Robots and Systems, Advanced Robotic Systems and the Real World, IEEE. Part vol.3, pp.1922-1929, 1994.

[23] M. Gill and A. Zomaya, “A parallel collision-avoidance algorithm for robot manipulators,” IEEE Concurrency, vol.6, no.1, pp.68-78, Jan.-March 1998.

[24] L-W Tsai, “Robot Analysis: The mechanics of serial and parallel manipulators,” Wiley, 1999.

[25] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars,

“Probabilistic Roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. on Robotics and Automation, vol.12, no.4, pp.566-580, Aug. 1996.

[26] E. J. Solterio Pires, J. A. Tenrerio Machado, “A trajectory planner for manipulators using genetic algorithm.” Proc. IEEE International Symposium on Assembly and task planning Proto. Protugal, pp.163-168, 1999.

[27] O. Maron, and T. Lozano-Pierez , “Visible Decomposition: Real-Time Path Planning in Large Planar Environments.” AI Memo 1638, 1996.

[28] H. Ando, Y. Oasa, I. Suzuki, “Distributed Memoryless Point Convergence Algorithm for Mobile Robots with Limited Visibility.”

IEEE Trans. on Robotics and Automation , vol. 15, no. 5, pp. 818-828, October 1999.

[29] B. Camel, D. J. Boley, M. Gini, V. Kumar, “Fast Motion Planning for Articulated Robots.” IEEE Trans., pp.1622-1627.

[30] L. Lu and S. Akella, “Folding Cartons with Fixtures: A Motion Planning Approach.” Trans. on Robotics and Automation, vol. 16, no. 4, pp 346-356, August 2000.

[31] A. A. Masoud, M. M. Bayoumi, “Intercepting a maneuvering target in a multidimensional stationary environment using a wave equation potential field strategy.” Proc. IEEE Intl. Sympoalum on Intelligent Control, pp 243-248, August, 1994.

[32] J. Kuffner, Jr. “Motion Planning with Dynamics.” Thesis. 1998.

[34] S. Cameron, “ A study of the clash detection problem in robotics,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 2, March, 1986.

[35] J. Chuang and N. Ahuja, “Shape Representation Using a Generalized Potential Field Model,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, pp. 169-176, 1997.

[36] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M.

Al-Bundak and C. M. Butler, “Potential Integrals for Uniform and Linear Source Distributions on Polygonal and Polyhedral Domains,” IEEE Trans. Antennas and Propagation, AP-32, no. 3, pp. 276-281, March 1984.

[37] J-H Chuang, C-C Lin and L-W Kuo, (2002) “Potential-Based Path Planning for Robot Manipulators”, Proc. 8th IEEE International Conference on Method and Models in Automation and Robotics, pp.

1031-1036, 2-5 Sep., 2002.

相關文件