• 沒有找到結果。

第五章 結論與建議

第二節 建議

目前多數與機器人教學相關的研究以學生為主要探究的對象,然而 本研究為少數以教師角度出發探討機器人教學影響因素之研究,故本研 究將依據研究結果,給予機器人教學實施與未來研究之建議。就研究上 來說,本研究有助於檢驗價值認定此外部因素對於延伸計畫行為理論模 式的影響性,並解釋中學對機器人教學的接受度。

一、機器人教學實施層面

首先,知覺行為控制是影響教師行為意向和實際教學行為最主要的 因素,換句話說,教師對自身在機器人教學上的自我效能與是否具備足 夠的知能都會影響教師是否能有效地進行課程(Anwar, 2019;Goode &

Margolis, 2011;Pittí, 2013)。Alimisis(2012)和 Kim 等人(2015)都曾 指出,訓練課程或工作坊皆對教師的自我效能有正向的幫助,據此,師 資培育機構及教育者應該在設計資師培育課程、在職進修課程、或是工 作坊時,應該設法提升教師在機器人教學上的知能和自我效能。職前教 師培育方面,可於現有課程中安排機器人教學相關的活動以教授相關之

能,例如在機構設計、結構設計、工程設計、以及機電整合實務等課程 堂中(Keren & Fridin, 2014;Zhong & Xia, 2020),因此,在安排培訓課 程和工作坊時,可以透過增加教師對機器人教學的接受度、以及提高機

原因,並提供未來建議與解決方法。

參考文獻

一、中文部分

林坤誼(2018)。STEM 教育在台灣推行的現況與省思。香港青年研究學 報,21(1),107-115。

胡淑華、蔡孟蓉(2019)。國中機器人STEAM 跨領域課程發展研究:以 彰化縣二水國中培龍計畫為例。數位學習科技期刊,11(4),51-75。

張基成、陳怡靜(2018)。機器人跨領域 STEM 主題式統整課程與任務 導向式教學的設計及評鑑。科學教育學刊,26(4),305-331。

張基成、曾繁勛、嚴萬軒、陳怡靜(2019)。帆船機器人 STEM 跨領域 統整課程的發展及學生認知成就與態度–網狀式主題統整與重理 解的課程設計。第八屆工程、技術與科技教育學術研討會,國立臺 灣師範大學。

教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高 級中等學校科技領域。取自 https://www.k12ea.gov.tw/files/class_

schema/課綱/13-科技/13-1/十二年國民基本教育課程綱要國民中學 暨普通型高級中等學校─科技領域.pdf

趙嘉浩、梁至中、蔡孟蓉(2017)。機器人課程教材鷹架對高中生未來關 鍵學習能力的影響。數位學習科技期刊,9(3),95-114。

二、外文部分

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds.), Action-control: From cognition to behavior (pp. 11-39). Heidelberg, Germany: Springer.

Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.

focus from technology to pedagogy. In Proceedings of the 3rd International Conference on Robotics in Education (pp. 7-14).

Alimisis, D. (2013). Educational robotics: Open questions and new challenges.

Themes in Science and Technology Education, 6(1), 63-71.

Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019). A Systematic Review of Studies on Educational Robotics. Journal of Pre-College Engineering Education Research (J-PEER), 9(2), 2.

Arís, N., & Orcos, L. (2019). Educational robotics in the stage of secondary education: empirical study on motivation and STEM skills. Education Sciences, 9(2), 73. doi: 10.3390/educsci9020073

Ariza, D. V., Palacio, A. M., Aragón, I. P., Logreira, E. A., Pulido, C. M., &

Mckinley, J. R. (2017). Application of color sensor programming with LEGO-Mindstorms NXT 2.0 to recreate a simplistic plague detection scenario. Scientia et Technica, 22(3), 268-272.

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.

Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289-307.

Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.

Cheng, Y. W., Sun, P. C., & Chen, N. S. (2018). The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & Education, 126, 399-416. doi:

10.1016/j.compedu.2018.07.020

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences.

Academic press.

Crawley III, F. E. (1990). Intentions of science teachers to use investigative teaching methods: A test of the theory of planned behavior. Journal of Research in Science Teaching, 27(7), 685-697.

Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics

& Data Analysis, 81(1), 10-23.

Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297-316.

Duran, M., Höft, M., Lawson, D. B., Medjahed, B., & Orady, E. A. (2014).

Urban high school students’ IT/STEM learning: Findings from a collaborative inquiry-and design-based afterschool program. Journal of Science Education and Technology, 23(1), 116-137.

Eguchi, A. (2016). Educational robotics as a learning tool for promoting rich environments for active learning (REALs). In Human-computer interaction: Concepts, methodologies, tools, and applications (pp. 740-767). IGI Global.

Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Journal of Business Venturing, 5, 177-189.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement:

Potential of the concept, state of the evidence. Review of educational research, 74(1), 59-109.

Gialamas, V., & Nikolopoulou, K. (2010). In-service and pre-service early childhood teachers’ views and intentions about ICT use in early childhood settings: A comparative study. Computers & Education, 55(1), 333-341.

Gomoll, A., Hmelo-Silver, C. E., Šabanović, S., & Francisco, M. (2016).

Dragons, ladybugs, and softballs: Girls’ STEM engagement with human-centered robotics. Journal of Science Education and Technology, 25(6), 899-914.

Goode, J., & Margolis, J. (2011). Exploring computer science: A case study of school reform. ACM Transactions on Computing Education (TOCE), 11(2), 1-16.

Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Los Angeles, LA: Sage publications.

Hair Jr, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced issues in partial least squares structural equation modeling. Los Angeles, LA: Sage publications.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998).

Multivariate data analysis (Vol. 5, No. 3, pp. 207-219). Upper Saddle River, NJ: Prentice hall.

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management &

Data Systems, 116(1), 2-20.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.

Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on elementary preservice teachers’ self-efficacy, science learning, and computational thinking. Journal of Science Education and Technology, 26(2), 175-192.

Johnson, J. (2003). Children, robotics, and education. Artificial Life and

Robotics, 7(1-2), 16-21.

Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905. doi:

10.3390/su10040905

Kandlhofer, M., & Steinbauer, G. (2016). Evaluating the impact of educational robotics on pupils’ technical-and social-skills and science related attitudes. Robotics and Autonomous Systems, 75, 679-685.

Keren, G., & Fridin, M. (2014). Kindergarten Social Assistive Robot (KindSAR) for children’s geometric thinking and metacognitive development in preschool education: A pilot study. Computers in Human Behavior, 35, 400-412. doi: 10.1016/j.chb.2014.03.009

Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015).

Robotics to promote elementary education pre-service teachers' STEM engagement, learning, and teaching. Computers & Education, 91, 14-31.

Kim, C., Yuan, J., Kim, D., Doshi, P., Thai, C. N., Hill, R. B., & Melias, E.

(2019). Studying the Usability of an Intervention to Promote Teachers’

Use of Robotics in STEM Education. Journal of Educational Computing Research, 56(8), 1179-1212.

Knop, L., Ziaeefard, S., Ribeiro, G. A., Page, B. R., Ficanha, E., Miller, M.

H., ... & Mahmoudian, N. (2017). A human-interactive robotic program for middle school stem education. In 2017 IEEE Frontiers in Education Conference (FIE) (pp. 1-7). IEEE.

Kucuk, S., & Sisman, B. (2017). Behavioral patterns of elementary students and teachers in one-to-one robotics instruction. Computers & Education, 111, 31-43.

Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., &

Almughyirah, S. (2016). Using robotics and game design to enhance children’s self-efficacy, STEM attitudes, and computational thinking skills. Journal of Science Education and Technology, 25(6), 860-876.

Li, C., Kam, W. K. K., & Zhang, M. (2019). Physical Education Teachers’

Behaviors and Intentions of Integrating STEM Education in Teaching.

The Physical Educator, 76(4), 1806-1101. doi: 10.18666/TPE-2019-V76-I4-9104

Lin, K. Y., & Williams, P. J. (2016). Taiwanese preservice teachers’ science, technology, engineering, and mathematics teaching intention.

International Journal of Science and Mathematics Education, 14(6), 1021-1036.

Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems?. Computers & Education, 49(4), 1097-1111.

Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017).

Programming experience promotes higher STEM motivation among first-grade girls. Journal of experimental child psychology, 160, 92-106.

Mataric, M. J., Koenig, N. P., & Feil-Seifer, D. (2007). Materials for Enabling Hands-On Robotics and STEM Education. In AAAI spring symposium:

Semantic scientific knowledge integration (pp. 99-102).

Melchior, A., Cohen, F., Cutter, T., Leavitt, T., & Manchester, N. H. (2005).

More than robots: An evaluation of the first robotics competition participant and institutional impacts. Heller School for Social Policy and Management, Brandeis University.

Melchior, A., Cutter, T., & Cohen, F. (2004). Evaluation of FIRST LEGO league. Waltham, MA: Center for Youth and Communities, Heller Graduate School, Brandeis University.

Menekse, M., Higashi, R., Schunn, C. D., & Baehr, E. (2017). The role of robotics teams’ collaboration quality on team performance in a robotics tournament. Journal of Engineering Education, 106(4), 564-584.

Misirli, A., & Komis, V. (2014). Robotics and programming concepts in Early Childhood Education: A conceptual framework for designing educational scenarios. In Research on e-Learning and ICT in Education (pp. 99-118).

Springer, New York, NY.

Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209-0015), 13. doi:

10.2316/Journal.209.2013.1.209-0015

Nugent, G., Barker, B., Grandgenett, N., & Welch, G. (2016). Robotics camps, clubs, and competitions: Results from a US robotics project. Robotics and Autonomous Systems, 75, 686-691.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw- Hill.

Pirouz, D. M. (2006). An overview of partial least squares. Available at SSRN

1631359. Retrieved from

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1631359

Pittí, K., Curto, B., Moreno, V., & Rodríguez, M. J. (2013). Resources and features of robotics learning environments (RLEs) in Spain and Latin America. In Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality (pp. 315-322).

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's Comments: A Critical Look at the Use of PLS-SEM in" MIS Quarterly". MIS Quarterly,36(1), 3-14.

Sadaf, A., Newby, T. J., & Ertmer, P. A. (2012). Exploring pre-service teachers' beliefs about using Web 2.0 technologies in K-12 classroom. Computers

& Education, 59(3), 937-945.

Sadaf, A., Newby, T. J., & Ertmer, P. A. (2016). An investigation of the factors that influence preservice teachers’ intentions and integration of Web 2.0 tools. Educational Technology Research and Development, 64(1), 37-64.

Salleh, S. (2016). Examining the influence of teachers' beliefs towards technology integration in classroom. The International Journal of Information and Learning Technology, 33(1), 17-35.

Somyürek, S. (2015). An effective educational tool: construction kits for fun and meaningful learning. International Journal of Technology and Design Education, 25(1), 25-41.

Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279-282.

Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960-967.

Taherdoost, H., & Masrom, M. (2009). An examination of smart card technology acceptance using adoption model. Paper presented at the Proceedings of the ITI 2009 31st International Conference on Information Technology Interfaces , Dubrovnik, Croatia.

Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers &

Education, 57(2), 1645-1653.

Teo, T., & Van Schaik, P. (2012). Understanding the intention to use technology by preservice teachers: An empirical test of competing theoretical models. International Journal of Human-Computer Interaction, 28(3), 178-188.

Teo, T., Zhou, M., & Noyes, J. (2016). Teachers and technology: development of an extended theory of planned behavior. Educational Technology Research and Development, 64(6), 1033-1052.

Valtonen, T., Kukkonen, J., Kontkanen, S., Sormunen, K., Dillon, P., & Sointu, E. (2015). The impact of authentic learning experiences with ICT on pre-service teachers' intentions to use ICT for teaching and learning.

Computers & Education, 81, 49-58.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.

Williams, D. C., Ma, Y., Prejean, L., Ford, M. J., & Lai, G. (2007). Acquisition of physics content knowledge and scientific inquiry skills in a robotics summer camp. Journal of Research on Technology in Education, 40(2), 201-216.

Xia, L., & Zhong, B. (2018). A systematic review on teaching and learning robotics content knowledge in K-12. Computers & Education, 127, 267-282. doi: 10.1016/j.compedu.2018.09.007

Zaldivar, D., Cuevas, E., Pérez-Cisneros, M. A., Sossa, J. H., Rodríguez, J. G.,

& Palafox, E. O. (2013). An educational fuzzy-based control platform using LEGO robots. International Journal of Electrical Engineering Education, 50(2), 157-171.

Zhong, B., & Xia, L. (2020). A Systematic Review on Exploring the Potential of Educational Robotics in Mathematics Education. International Journal of Science and Mathematics Education, 18(1), 79-101.

Zint, M. (2002). Comparing three attitude‐behavior theories for predicting science teachers' intentions. Journal of Research in Science Teaching, 39(9), 819-844.

附 錄

附錄一 預試研究模型

附錄二 PLS 研究模型(原始模型)

附錄三 PLS 研究模型(刪除 V4、SN2、SN3、I4、I5)

附錄四 PLS 研究模型(刪除 SN1)

附錄五 中學教師實施機器人教學行為意向調查問卷題項

5. 我能夠依照學校環境、資源及學生特質來設計符合學生需求的機器 人教學活動。

五、行為意向

1. 我願意依照課程綱要的規劃來實施機器人教學。

2. 如果有充足的資源和設備,我會願意在課程中實施機器人教學。

3. 不論教學環境如何,我會盡我所能嘗試實施機器人教學。

4. 我會嘗試與相關領域的其他教師合作以實施機器人教學。

5. 在實施機器人教學時,我會嘗試提醒學生要根據他們所學的知能來 解決過程中遇到的問題,而非依靠直覺。

六、實際教學行為

1. 我曾經指導學生參加機器人相關競賽活動。

2. 我指導的學生隊伍曾經在機器人競賽中獲獎。

3. 我已經開始規劃機器人教學課程活動。

4. 我已經在正式課程中實施機器人教學活動。

5. 我在規劃機器人教學的過程中,曾參與相關的研習活動或進修課程。

6. 我在規劃機器人教學的過程中,曾參與機器人教學相關網路社群

(如Facebook、Line 群組)。

相關文件