• 沒有找到結果。

第五章 結論與建議

5.2 建議

本研究依研究過程的發現及經驗,提出下列幾項建議,以供後續研究 參考:

1. 減碳效益評估:本研究並未考量植物的固碳作用,故未來可考量針對 不同植物的固碳作用進行分析,以利減碳效益評估之完整性。

2. 氣象資料不確定性:本研究在評估截水效益並未考量氣象資料的不確 定性,近年來氣候變遷,宜分析不確定對結果的影響。

3. 成本資料:因目前國內現有案例較少,且有些成本價格範圍較廣,如 本研究取得的植栽及基質成本,會造成估算的不確定性,亦有必要進 一步分析。

4. 截水量之效益:本研究雖有估算截水的量,但並沒有建立方法評估其 效益,有必要進一步探討。

5. 國內雨水系統擴充效益:本研究雖以降低尖峰逕流量之百分比作為雨 水排水系統擴充之依據,唯此值是一個概估值,詳細推估可考量採用 建 SWMM 模式進一步分析之。

82

6. 降低洪災之效益:綠屋頂可有效降低尖峰流量,並延遲降雨延時,對 於易淹水地區具有一定的效益,唯此部分在案例區的相關研究上甚少,

近年來因氣候變遷,新竹市淹水的可能性亦隨之增加,未來可考量探 討適當的方法評估減少淹水的效益。

7. 城市綠屋頂最適建置地點分析:本研究著重於評估城市建置綠屋頂的 效益評估,故以目前新竹市可建置的最大綠屋頂面積為估算依據,唯 不同地區設置綠屋頂的效益可能大不相同,故未來可考量進一步分析 在何處建置綠屋頂的效益較佳。

83

參考文獻

中鼎工程股份有限公司,(96 年),「空氣污染物排放清冊更新管理及空氣 品質質損量推估計劃(第二年)」,期末報告定稿本,台北。

內政部營建署,(75 年),「換氣與空氣調節設備技術規範」,中華民國建 築協會,台北。

內政部營建署,(92 年),「新竹市雨水下水道系統重新規劃報告」,新竹 市環保局,新竹。

內 政 部 營 建 署 , (98 年 ) , 營 建 統 計 年 報 。 http://w3.cpami.gov.tw/statisty/98/98_htm/index.htm (accessed on 2012/01/11)。

內 政 部 營 建 署 , (98 年 ) , 歷 年 核 發 建 物 使 用 執 照 。 http://w3.cpami.gov.tw/statisty/98/98_htm/index.htm (accessed on 2012/01/11)。

內 政 部 營 建 署 , (100 年 ) , 雨 水 下 水 道 系 統 實 施 概 況 。 http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=art icle&id=14055&Itemid=50 (accessed on 2012/01/11)。

台 灣 電 力 公 司 , (99 年 ) , 電 力 排 放 係 數 。 http://www.moeaboe.gov.tw/Download/Promote/greenhouse/files/99 年度電力排 放係數.pdf (accessed on 2012/01/11)。

台電永續報告,(99 年),「2010 年台電永續報告書」,台灣電力公司,台 北。

行政院經建會,(100 年),公共建設計畫財務評估中折現率如何訂定之研 究 。 http://www.cepd.gov.tw/m1.aspx?sNo=0008759 (accessed on 2012/01/11)。

竹軒園公司,(100 年),竹軒園景觀工程設計公司(市場訪價)。

84

交大營繕組,(100 年),國立交通大學營繕組 (市場訪價 Tel:(03)5725763),

http://www.ga.nctu.edu.tw/ga5/ (accessed on 2012/01/11)。

李京澄 (99 年),「綠屋頂之降雨截水能力分析」,國立交通大學環境工程 研究所碩士論文,新竹。

住 宅 e 化 網 , (100 年 ) , 全 國 資 料 整 合 查 詢 。 http://ehi.cpami.gov.tw/Net/houseinfo/querycity1.aspx (accessed on 2012/01/11)。

林憲德,(86 年),「建築能源法規的解說與實例專輯」,營建雜誌社,台 北。

林憲德、黃國倉,(94 年), “台灣 TMY2 標準氣象年之研究與應用”,建 築學報,第 53 期,79-94 頁。

林冠宏,(96 年),「中部空品區 SO2、O3 及 PM10 對人體健康影響之研究」, 朝陽科技大學環境工程與管理系,碩士論文,台中。

林清裕,(100 年),「以電腦模擬公寓住宅空調負荷與外牆隔熱效益研究」,

朝陽科技大學建築及都市設計研究所,碩士論文,台中。

林志成建築事務所,(100 年),林志成建築師事務所 (訪查)。

郭柏巖,(94 年),「住宅耗電實測解析與評估系統之研究」, 國立成功大 學建築研究所,博士論文,台南。

黃國倉,(91 年),「空調設備簡易預測法之研究」,國立成功大學建築研 究所,碩士論文,台南。

黃振寬,(96 年),「以空氣資源管理效益整合模型評估溫室氣體與空氣污 染物綜合減量之經濟及社會效益」,國立台北科技大學環境規劃與管理 研究所,碩士論文,台北。

85

新 竹 市 環 保 局 , (100 年 ) , 新 竹 市 溫 室 氣 體 節 能 減 量 計 畫 。 http://www.hccepb.gov.tw/airweb/air/pro10/index.html (accessed on 2012/01/11)。

經 濟 部 能 源 局 , (99 年 ) , 99 年 度 太 陽 能 發 電 系 統 電 價 躉 購 費 率 。 http://www.moeaboe.gov.tw/Policy/Renewable/meeting/SEmeetingMain.asp x?pageid=others (accessed on 2012/01/11)。

賴柏亨,(97 年),「辦公大樓自然通風對 ENVLOAD 指標優惠評估之研究」, 國立成功大學建築研究所,碩士論文,台南。

環 保 署 綠 色 生 資 訊 活 網 , (100 年 ) , 節 能 減 碳 計 畫 。 http://greenliving.epa.gov.tw/GreenLife/ (accessed on 2012/01/11)。

蕭代基教授研究群,(98 年),「綠色稅制改革之研究」,行政院賦稅改革 委員會研究報告。

寶銳公司,(100 年),寶銳企業有限公司(直接詢價 Tel:(06)2676318),

http://www.greenroof.com.tw/ (accessed on 2012/01/11)。

Akbari, H. (2002). “Shade trees reduce building energy use and CO2 emissions from power plants.” Environment Pollution, 116, pp. 119-126.

Baldocchi, D.D., Hicks, B.B., and Camara, P. (1987). “A canopy stomatal resistance model for gaseous deposition to vegetated surfaces.” Atmospheric Environment, 21, pp. 91–101.

Barrio, E.P.D. (1998). “Analysis od the green roofs cooling poteintial in buildings.” Energy and Buildings, 27, pp. 179-193.

Becket, K.P., Freer-Smith, P., and Taylor, G. (1998). “Urban woodlands: their role in reducing the effects of particulate pollution.” Environment Pollution, 99, pp. 347-360.

86

Berndtsson, J.C. (2010). “Green roof performance towards management of runoff water quantity and quality: A review.” Ecological Engineering, 36, pp. 351-360.

Casey Trees Endowment Fund and Limno-Tech Incorporation. (2005).

Re-greening Washington, DC: A green roof vision based on quantifying storm water and air quality benefits. Casey Trees Endowment Fund, Washington, DC.

Castleton, H.F., Stovin, V., Beck, S.B.M., and Davison, J.B. (2010). “Green roofs; building energy savings and the potential for retrofit.” Energy and Buildings, 42, pp. 1582-1591.

Carter, T. and Jackson, C.R. (2006). “Vegetated roofs for stormwater management at multiple spatial scales.” Landscape and Urban Planning, 80, pp. 84-94.

Carter, T.L. and Rasmussen, T.C. (2006). “Hydrologic behavior of vegetated roofs.” Journal of the American Water Resources Association, 42(5), pp.

1261-1274.

Carter, Y. and Keeler, A. (2008). “Life-cycle cost-benefit analysis of extensive vegetated roof systems.” Journal of Environmental Management, 87, pp.

350-363.

Chang, N.B., Rivera, B.J., and Wanielista, M.P. (2011). “Optimal design for water conservation and energy savings using green roofs in a green building under mixed uncertainties.” Journal of Cleaner Production, 19, pp.

1180-1188.

City of Toronto and Ontario Centres of Excellence-Earth and Environmental Technologies (OCE-ETech) (2005). Report on the environmental Benefits and Costs of Green Roof Technology for the City of Toronto. City of

87

Toronto and Ontario Centres of Excellence-Earth and Environmental Technologies, Toronto.

Clark, C., Adriaens, P., and Talbot, F.B. (2008). “Green Roof Valuation: A Probalistic Economic Analysis of Environmental Benefits.” Environmental Science, 42, pp. 2155-2161.

Corrie, C., Talbot, B., Bulkley, J., and Adriaens, P. (2005). “Optimization of green roofs for air pollution mitigation.” Proceedings of Third Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade show, Washington, DC, USA, May 4-6.

Corrie, B.A. and Bass, B. (2005). “Estimate of air pollution mitigation with green plants and green roofs using the UFORE model.” Proceedings of Third Annual Greening Rooftops for Sustainable Communities Conference, Washington, DC, USA, May 4-6.

Dab, W., Quenel, S. M. P., Moullec, Y. L., Tertre, A. L., Thelot, B., Monteil, C., Lameloise, P., Pirard, P., Momas, I., Ferry, R., and Festy, B. (1996).

“Short term respiratory health effects of ambient air pollution:results of APHEA project in Paris.” Journal of Epidemiology & Community Health, 50, pp. 42-46.

Dyer, A.J. and Bradley, C.F. (1982). “An alternative analysis of flux gradient relationships.” Boundary-Layer Meteorology, 22, pp. 3–19.

Del Barrio, E.P. (1998). “Analysis of the green roofs cooling potential in buildings.” Energy Build, 27, pp. 179-196.

European Commission, DG Research, Technological Development and Demonstration. (2004). New Elements for the Assessment of External Costs from Energy Technologies. European Commission, DG Research, Technological Development and Demonstration..

88

Fioretti, R., Palla, A., and Principi, P. (2010). “Green roof energy and water related performance in the Mediterranean climate.” Building and Environment, 45, pp. 1890-1904.

Feng, C., Meng, Q., and Zhang, Y. (2010). “Theoretical and experimental analysis of the energy balance of extensive green roofs.” Energy and Buildings, 42, pp. 959-965.

Giorgi, F. (1988). “Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model.” Tellus, 40(B), pp. 23-41.

Getter, K.L., Rowe, D.B., Robbertson, G.P., Gregg, B.M., and Andresen, J.A.

(2009), “Carbon Sequestration Potential of extensive Green Roofs.”

Environmental Science Technology, 43, pp. 7564-7570.

Getter, K.L., Rowe, A.B., and Andresen, J.A. (2007). “Quantifying the effect of slope on extensive green roof stormwater retemtion.” Ecological Engineering, 31, pp. 225-231.

Haemmerle, F. (2002). “Der Markt fur grune Dacher wachst immer weiter.”

Proceedings of the Jahrbuch Dachbegrunung, (German), pp. 11-13.

He, H. and Jim, C.Y. (2010). “Simulation of thermodynamic transmission in green roof ecosystem.” Ecological Modeling, 221, pp. 2949-2958.

Herman, R. (2003). “Green Roofs in Germany: Yesterday, Today and Tomorrow.” Proceedings of the 1st North American Green Roof Conference:

Greening rooftop for sustainable communities, Chicago, Il, USA.

Hill, A.C. (1971). “Vegetation: a sink for atmospheric pollutants.” Journal of the Air Pollution Control Association, 21, pp. 341-346.

89

Hilten, R.N., Lawrence, T.M., and Tollner, E.W. (2008). “Modeling stormwater runoff from green roofs with HYDRUS-1D.” Journal of Hydrology, 358, pp. 288-293.

Hilten, R.N. (2005). An analysis of the energetic and stormwater mediation potential of green roofs. The graduate faculty of The University of Georgia, Athens, Georgia, USA.

Hirsch, J.J. (2003). “eQUEST Introductory Tutorial.” http://doe2.com/equest (accessed on 2012/01/11).

Jim, C.Y. and He, H. (2010). “Coupling heat flux dynamics with meteorological conditions in green roof ecosystem.” Ecological Engineering, 36, pp. 1052-1063.

Killus, J.P., Meyer, J.P., Durran, D.R., Anderson, G.E., Jerskey, T.N., Reynolds, S.D., and Ames. J. (1984). “Continued Research in Mesoscale Air Pollution Simulation Modeling.” Vol. V: Refinements in Numerical Analysis, Transport, Chemistry, and Pollutant Removal. EPA/600/3-84/095a, US Environmental Protection Agency, Research Triangle Park, NC.

Kohler, M. (2003). “Plant survival research and biodiversity: kessons from Europe.” Proceeding of Greening Rooftops for Sustainable Communities Conference, Chicago.

Kosareo, L. and Ries, R. (2006). “Comparative environmental life cycle assessment of green roofs.” Building and Environment, 42, pp. 2606-2613.

Kneifel, J. (2010). “Life-cycle carbon and cost analysis of energy efficiency measures in new commercial buildings.” Energy and Building, 42, pp.

333-340.

90

Li, J.F., Wai, O.W.H., Li, Y.S., Zhan, J.M., Ho, Y.A., Li, J., and Lam, E.

(2010). “Effect of green roof on ambient CO2 concentration.” Building and Environment, 45, pp. 2644-2651.

Lim, J.H., Sabin, L.D., Schiff, K.C., and Stozenbach, K.D. (2006).

“Concentration, size distribution, and dry deposition rate of particle-associated metals in the Los Angeles region.” Atmospheric Environment, 40, pp. 7810–7823.

Martens, R., Bass, R., and Alcazar, S. (2008). “Roof-envelope ration impact on green roof energy performance.” Urban Ecosystems, 11, pp. 339-408.

Mentens, J., Raes, D., and Hermy, H. (2007). “Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century?” Landscape and Urban Planning, 77, pp. 217-226.

Mitchell, V.G., Cleugh, H.A., Grimmond, C.S.B., and Xu, J. (2008). “Linking urban water balance and energy balance models to analyse urban design options.” Hydrological Processes, 22, pp. 2891-2900.

Morikawa, H., Higaki, A., Nohno, M., Takahashi, M., Kamado, M., Nakata, M., Toyohara, G., Okamura, Y., Matsui, K., Kitani, S., Irifune, K., and Goshima, N. (1998). “More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa.” Plant, cell and Environment, 21, pp. 180-190.

Montalto, F., Behr, C., Alfredo, K., Wolf, M., Arye, M., and Walsh, M. (2007).

“Rapid assessment of the cost-effectiveness of low impact development for CSO control.” Landscape and Urban Planning, 82, pp. 117-131.

Nowak, D.J. (1994). “Chapter 5: Air pollution removal by Chicago’s urban forest.” USDA Forest Service General technical report NE-186. In:

McPherson, E.G. (Ed.), Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. United States Department of

91

Agriculture, Forest Service, Northeastern Forest Experimental Station, Randnor, PA, USA, pp. 63-81.

Niu, H., Clarkm C., Zhou, J., and Adriaens, P. (2010). “Scaling of Economic Benefits from Green Roof Implementation in Washington, DC.”

Environment Science Technology, 44, pp. 4302-4308.

Panofsky, H.A. and Dutton, J.A. (1984). Atmospheric Turbulence. Wiley, New York.

Porsche, U. and Kohler, M. (2003). “Life cycle costs of green roofs.”

Proceedings of World Climate & Energy Event, 1-5 December 2003, Rio de Janeiro, Brazil.

Ponce de Leon, A., Anderson, H. R., Blend, J. M., Strachan, D. P., and Bower, J. (1996). “Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987-1988 and 1991-1992.” Journal of Epidemiology and Community Health, 50, pp.63-70.

Peters, K. and Eiden, R. (1992). “Modelling the dry deposition velocity of aerosol particles to a spruce forest.” Atmospheric Environment, 26, pp.

2555-2564.

Ramser, C..E. (1927). “Runoff from small agricultural areas.” Journal of Agricultural Research, 34, pp. 797-823.

Rosenfeld, A.H., Akbari, H., Romm, J.J., and Pomerantz, M. (1998). “Cool communities: strategies for heat island mitigation and smog reduction.”

Energy and Building, 28, pp. 51-62.

92

Slinn, W.G.N. (1982). “Predictions for particle deposition to vegetative surfaces.” Atmospheric Environment, 14, pp. 1013-1026.

Saiz, S., Kennedy, C., Bass, B., and Pressnail, K. (2006). “Comparative Life Cycle Assessment of Standard and Green Roofs.” Environmental Science, 40, pp. 4312-4316.

She, N. and Pang, J. (2010). “Physically Based Green Roof Model.” Journal of Hydrologic Engineering, 15, pp. 458-464.

Simunek, J., Genuchten, M. T. V., and Sejna, M. (2008). “Development and applications of the HYDRUS and STANMOD software packages and related codes.” Vadose Zone Journal, 7, pp. 587-600.

Spix, C. and Wichmann, H. E. (1996). “Daily mortality and air pollutions:

findings from Koln Germany.” Journal of Epidemiology and Community Health, 50, pp. 52-58.

Stovin, V. (2010). “The potential of green roofs to manage Urban Stormwater.”

Water and Environment Journal, 24, pp. 192-199.

Sunyer, J., Castellsague, J., Saez, M., Tobias, A., and Anto, J. M. (1996). “Air pollution and mortality in Barcelona.” Journal of Epidemiology and Community Health, 50, pp.76-80.

Tan, P.Y. and Sia, A. (2005). “A pilot green roof research project in Singapore.” Proceedings of Third Annual Greening Rooftops for Sustainable Communities Conference, Washington, DC, USA, May 4-6.

Taylor, D.A., (2007). “Growing green roofs, city by city.” Environmental Health Perspectives, 115, pp.307-311.

93

The District of Columbia Department of the Environment (DDOE).

http://ddoe.dc.gov/ddoe/cwp/view,a,1209,q,498382.asp (accessed on 2012/01/11).

Uhl, M. and Schiedt, L. (2008). “Green Roof Storm Water Retention- Monitoring Results.” Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.

Ulden, V.A.P. and Holtslag, A.A.M. (1985). “Estimation of atmospheric boundary layer parameters for diffusion application.” Journal of Climate Applied Meteorology, 24, pp. 1196–1207.

Verhoeff, A. P., Hoek, G., Schwartz, J., and van Wijnen, J. H. (1996). “Air pollution and daily mortality in Amsterdam.” Epidemiology, 7, pp. 225-230.

Villarreal, E.L. (2004). “Inner city stormwater control using a combination of best management practices.” Ecological Engineering, 22, pp. 279-298.

Voyde, E., Fassman, E., Simcock, R., and Wells, J. (2010), “Quantifying Evapotranspiration Rates for New Zealand Green Roofs.” Journal of Hydrologic Engineering, 15, pp. 395-403.

Wesely, M. J. (1989). “Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. ” Atmospheric Environment, 23 (6), pp. 1293-1304.

Wolf, D. and Lundholm, J.T. (2008). “Water uptake in green roof microcosms:

Effects of plant species and water availability.” Ecological Engineering, 33, pp. 179-186.

Wong, N.H., Tay, S.F., Wong, R., Ong, C.L., and Sia, A. (2003). “Life cycle cost analysis of roof top gardens in Singapore.” Building and Environment, 38, pp. 499-509.

94

Yang, J., McBride, J., Zhou, J., and Sun, Z. (2005). “The urban forest in Beijing and its role in air pollution reduction.” Urban Forest & Urban Greening, 3, pp. 65-78.

Yang, J., Yu, Q., and Gong, P. (2008). “Quantifying air pollution removal by green roofs in Chicago.” Atmospheric Environment, 42, pp. 7266-7273.

Zannetti, P. (1990). Air Pollution Modeling. Van Nostrand Reinhold, New York.

95

附錄 A

A.1 eQUEST 簡介

eQUEST 是一套由 DOE-2, Wizards 及 Graphics 等功能所組成的建築物 耗能模擬軟體,DOE-2 是過去常被用於建築耗能的軟體,此套軟體從 1970 年代,由美國的 ASHRAE, NASA 等機構所研發,近年由於節能減碳的原 因,這套軟體再次被注意,eQUEST 是從 DOE-2 發展而來,兩套軟體不同 之處在於 eQUEST 除了具備 DOE-2 原有的功能外,更增加許多利於評估 及設計者使用,除了上述為本研究選擇其作為建築耗能軟體之原因外,更 因為此軟體可在其官方網站免費下載。

eQUEST 能夠模擬建築物逐時的耗能資料,使用者需輸入的資料包 含:當地年氣象資料、詳細的建築物基本參數及空調系統參數,氣象資料 部份,eQUEST 內建了美國加州常用的地方氣象資料,如使用者位於其他 國家,則需使用 bin, TMY, TRY 或 TMY2 等氣象格式,建築物基本參數包 含建築物內部面積設置、照明密度、設備密度及建材選用(外牆、屋頂及玻

eQUEST 能夠模擬建築物逐時的耗能資料,使用者需輸入的資料包 含:當地年氣象資料、詳細的建築物基本參數及空調系統參數,氣象資料 部份,eQUEST 內建了美國加州常用的地方氣象資料,如使用者位於其他 國家,則需使用 bin, TMY, TRY 或 TMY2 等氣象格式,建築物基本參數包 含建築物內部面積設置、照明密度、設備密度及建材選用(外牆、屋頂及玻

在文檔中 城市綠屋頂成本效益分析 (頁 98-0)