• 沒有找到結果。

第五章 結論與建議

第二節 建議

本章節依據實驗教學與研究結果中所發現之相關問題、及可以再進行改善的 部份提出相關的建議,以供未來研究之參考。

壹、單極馬達實驗教學之建議:

本研究對高中單極馬達實驗教學之建議包括:(1) 使用數位學習環境結合探 索式教學模式學習單極馬達實驗。(2) 教材融入遊戲化設計成分。各項之建議分 述如下:

一、使用數位學習環境結合探索式教學模式學習單極馬達實驗

由於學習者在高中物理課程中能進入實驗室的機會不多,即使在實驗室中,

授課的物理老師也難以即時確認每一位學生對實驗步驟與概念的理解,以電與磁 的統一單元為例,電與磁概念本身為較抽象,科學實驗室內的電流天平教具雖精 密但貴重,並不容易讓學生帶回家操作。本研究使用平板電腦所提供的虛擬資訊 及實體教具所提供的實際操作經驗,能夠有效幫助學習者建構抽象的電磁交互作 用概念。結合不同的探索式教學模式,則能夠使不同學習風格的學習者,在實驗 操作過程中對知識理解與應用的過程更適性化。因此,由本研究結果指出,若使 用擴增實境學習環境搭配Learn-Play 策略,或是使用數位模擬學習環境搭配 Play-Learn 策略,皆對於單極馬達實驗的學習有很好的幫助,學習者在學習成效或是 學習動機都有良好的表現。

二、設計良好的使用者體驗(UX)融入遊戲化教材

由學習動機問卷結果發現,學習者對於將遊戲成分融入物理實驗學習中,抱 持正向的學習動機,但在擴增實境學習環境的學習者,其單極馬達實驗學習成效 反而比數位模擬學習環境低。在物理實驗融入擴增實境遊戲時,在遊戲畫面上,

72

若欠缺足夠的學習引導與操作提示訊息,可能使學習者在不熟悉擴增實境互動方 式的情況下,進行遊戲體驗與實驗操作,間接影響實驗學習成效。因此,建議未 來研究在偏向動態概念的實驗內容上,例如:磁力線的三維表徵、電流流動效果 以及線圈旋轉效果等,謹慎考量使用者體驗設計,先以靜態的方式呈現在學習者 的平板畫面上,再依遊戲互動設計,逐步呈現動態的動畫效果。若能優化使用者 體驗設計,將遊戲的趣味性融入教育內容中,學習者在數位學習環境中可以減少 科技所帶來的外在認知負荷,再此情況下進行操作探索操作,對於學習者在物理 實驗學習上應有好的幫助。

貳、未來研究之建議

本研究針對未來研究方向之建議,有以下三點建議,包含:(1) 不同數位學習 環境比較。(2) 提升擴增實境應用程式互動性。(3) 不同探究實驗課程設計,各項 之建議分述如下:

一、不同數位學習環境比較

未來研究可以嘗試加入電腦模擬及傳統教學的比較,對於講述式教學、電腦 輔助動畫教學、平板電腦遊戲教學或是與實體教具結合的擴增實境教學,研究何 種方式最適合學習者。由於每種教學方式都有各自的優點,黑板講述式教學可以 直接傳達學習知識;電腦輔助動畫可以提供學習者活潑的動畫體驗;平板電腦則 可以讓學習者帶著學習,不用受限於學習環境;擴增實境教學則能使學習者透過 與實體教具的互動及平板電腦提供的虛擬資訊同步學習。藉由多方不同環境的學 習比較,得以讓單極馬達實驗的研究更臻完全。

二、提升擴增實境應用程式互動性

本研究結果指出,使用數位模擬對於單極馬達實驗學習成效而言,有好的效 果。因擴增實境在整合真實世界及虛擬資訊的開發上需要克服諸多技術困難,包

73

含 3D 建模、互動程式功能與遊戲介面設計。若能整合不同領域的人才,設計出 具有良好使用者體驗(UX)之互動應用程式,將此應用實施於其他科學實驗領域上,

例如:奈米分子觀測、大氣壓力探究、牛頓三大運動定律等,將可發揮正面的學 習效果。

三、不同探究實驗課程設計

本研究之教學課程為電與磁交互作用實驗課程,研究結果雖顯示學習者的學 習成效與學習動機有好的表現,但測驗的方式為紙筆評量,僅評量學生在單極馬 達實驗課程中的知識理解與知識應用能力,未透過數位學習環境提升學習者在認 知層次更上位的能力,例如:分析能力、綜合能力、評鑑能力,以及應用到其他 實驗的科學過程技能能力。故未來研究建議可以進一步在數位學習環境中,增加 更貼近科學過程技能的探究實驗課程設計或是評量方式,引導學習者設計與執行 實驗,提升在實驗中分析與解釋數據等能力(黃明輝, 2016)。

74

周建和(2007)。街頭物理:動手做讓物理動起來。物理雙月刊, 29(4), 845–855。

林宣安(2011)。演示教學對國中學生學習成效之影響-以電流磁效應及電磁感應 環境Easy Java Simulation。物理雙月刊, 28(3)。

黃鳳琴(2002)。建構主義教學對國小五年級學生「看星星」單元學習成效及概念 分析研究。臺北市立師範學院碩士論文(未出版)。

葉炳煙(2013)。學習動機定義與相關理論之研究。屏東教大體育, 285–293。

葉蓉樺(2008)。操作式科學展示對「電與磁」相關概念學習輔助探討:中小學教 師的觀點。物理教育學刊, 9(2), 35–56。

廖邦捷(2014)。擴增型態與引導策略對高中電化學反應課程學習成效與動機之影 響。國立臺灣師範大學碩士論文(未出版)。

75

蔡承哲(2013)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機之 影響。國立臺灣師範大學碩士論文(未出版)。

蔡福興、游光昭、蕭顯勝(2008)。從新學習遷移觀點發掘數位遊戲式學習之價 值。課程與教學季刊, 11(4), 237–278。

76

英文部分

Arvanitis, T. N., Petrou, A., Knight, J. F., Savas, S., Sotiriou, S., Gargalakos, M., &

Gialouri, E. (2009). Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities. Personal and Ubiquitous Computing, 13(3), 243–250.

Ateş, Ö., & Eryilmaz, A. (2011). Effectiveness of hands-on and minds-on activities on students’ achievement and attitudes towards physics. Asia-Pacific Forum on Science Learning and Teaching Article, 12(6), 1.

Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.

Bower, M., Howe, C., McCredie, N., Robinson, A., & Grover, D. (2013). Augmented reality in Education - Cases, places, and potentials. Proceedings of the 2013 IEEE 63rd Annual Conference International Council for Education Media, ICEM 2013, 37–41.

Bybee, R. W., Taylor, J. a, Gardner, a, Scotter, P.V, Powell, J. C., Westbrook, a, &

Landes, N. (2006). The BSCS 5E Instructional Model: Origins, Effectiveness, and Applications. Bscs, 1–19.

Chang, Y. H., & Liu, J. C. iang. (2013). Applying an AR technique to enhance situated heritage learning in a ubiquitous learning environment. Turkish Online Journal of Educational Technology, 12(3), 21–32.

Chen, N.-S., Teng, D. C.-E., Lee, C.-H., & Kinshuk. (2011). Augmenting paper-based reading activity with direct access to digital materials and scaffolded questioning.

Computers & Education, 57(2), 1705–1715.

Costu, B., Ü nal, S., & Ayas, A. (2007). A hands-on activity to promote conceptual change about mixtures and chemical compounds. Journal of Baltic Science Education, 6(1), 35–46.

DaRocha Seixas, L., Gomes, A. S., & DeMelo Filho, I. J. (2016). Effectiveness of gamification in the engagement of students. Computers in Human Behavior, 58, 48–63.

Davidsson, M., Johansson, D., & Lindwall, K. (2012). Exploring the use of augmented reality to support science education in secondary schools. Proceedings 2012 17th IEEE International Conference on Wireless, Mobile and Ubiquitous Technology in Education, WMUTE 2012, 218–220.

Doolittle, P. E., & Camp, W. G. (1999). Constructivism: The Career and Technical Education Perspective. Journal of Career and Technical Education, 16(1).

Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics

77

through play in an augmented reality environment. International Journal of Computer-Supported Collaborative Learning, 7.

Eseryel, D., Law, V., Ifenthaler, D., Ge, X., & Miller, R. (2014). An investigation of the interrelationships between motivation. Journal of Educational Technology &

Society, 17(1), 42–53.

Evans, C., & Waring, M. (2011). Student teacher assessment feedback preferences:

The influence of cognitive styles and gender. Learning and Individual Differences, 21(3), 271–280.

Fazelian, P., ebrahim, A. N., & Soraghi, S. (2010). The effect of 5E instructional design model on learning and retention of sciences for middle class students.

Procedia - Social and Behavioral Sciences, 5, 140–143.

Fiorentino, M., Uva, A. E., Gattullo, M., Debernardis, S., & Monno, G. (2014).

Augmented reality on large screen for interactive maintenance instructions.

Computers in Industry, 65(2), 270–278.

Ibáñez, M. B., DiSerio, Á ., Villarán, D., & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student

experience and educational effectiveness. Computers & Education, 71, 1–13.

Justice, C., Rice, J., Roy, D., Hudspith, B., & Jenkins, H. (2009). Inquiry-based learning in higher education: administrators’ perspectives on integrating inquiry pedagogy into the curriculum. Higher Education, 58(6), 841–855.

Kahle, J. B., & Damnjanovic, A. (1994). The effect of inquiry activities on elementary students’ enjoyment. Journal of Women and Minorities in Science and

Engineering, 1(1), 17–28.

Karplus, Robert & Thier, H. D. (1967, January). A new look at elementary school science, new trends in curriculum and instruction series.

Klopfer, E., & Sheldon, J. (2010). Augmenting your own reality: Student authoring of science-based augmented reality games. New Directions for Youth Development, 2010(128), 85–94.

Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational

Technology Research and Development, 56(2), 203–228.

Lati, W., Supasorn, S., & Promarak, V. (2012). Enhancement of Learning Achievement and Integrated Science Process Skills Using Science Inquiry Learning Activities of Chemical Reaction Rates. Procedia - Social and Behavioral Sciences, 46, 4471–4475.

Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Toward Valid and Meaningful Assessment of Learners’ Conceptions of Nature of Science. Journal of Research in Science

78

Teaching, 39(6), 497–521.

Lee, J. (1999). Effectiveness of Computer-based instruction simulation: A meta-analysis. International Journal of Instructional Media, 26(1), 71–85.

Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration.

Science Education, 87(4), 517–538.

Loureiro, A., & Bettencourt, T. (2014). The Use of Virtual Environments as an Extended Classroom – A Case Study with Adult Learners in Tertiary Education.

Procedia Technology, 13, 97–106.

Mansureh Kebritchi, & Atsusi, H. (2008). Examining the pedagogical foundations of modern educational computer games. Computers & Education, 51(4), 1729–1743.

Prensky, M. (2003). Digital game-based learning.Computers in Entertainment, 1(1), 21-21.

Matsutomo, S., Mitsufuji, K., Hiasa, Y., & Noguchi, S. (2013). Real time simulation method of magnetic field for visualization system with augmented reality technology. IEEE Transactions on Magnetics, 49(5), 1665–1668.

Matsutomo, S., Miyauchi, T., Noguchi, S., & Yamashita, H. (2012). A New 3-D Visualization System of Magnetic Field with Augmented Reality Technology for Education. IEEE Transactions on Magnetics, 48(2), 531–534.

Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Kwok, O., Cifuentes, L., & Davis, T. J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(2), 551–568.

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented Reality: A class of displays on the reality-virtuality continuum, 2351.

Mohanty, S. D., &Cantu, S. (2011). Teaching introductory undergraduate physics using commercial video games. Physics Education, 46(5), 570–577.

Molenaar, I., Roda, C., vanBoxtel, C., & Sleegers, P. (2012). Dynamic scaffolding of socially regulated learning in a computer-based learning environment. Computers

& Education, 59(2), 515–523.

Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353.

Moreno-Ger, P., Burgos, D., Martínez-Ortiz, I., Sierra, J. L., & Fernández-Manjón, B.

(2008). Educational game design for online education. Computers in Human Behavior, 24(6), 2530–2540.

Rastegarpour, H., & Marashi, P. (2012). The effect of card games and computer games on learning of chemistry concepts. Procedia - Social and Behavioral Sciences, 31, 597–601.

Rienties, B., Giesbers, B., Tempelaar, D., Lygo-Baker, S., Segers, M., & Gijselaers,

79

W. (2012). The role of scaffolding and motivation in CSCL. Computers &

Education, 59(3), 893–906.

Saorin, J. L., de La Torre, J., Martín, N., & Carbonell, C. (2013). Spatial training using digital tablets. Procedia-Social and Behavioral Sciences, 93, 1593-1597.

Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science

instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.

Sun, C. T., Ye, S. H., & Wang, Y. J. (2015). Effects of commercial video games on cognitive elaboration of physical concepts. Computers and Education, 88, 169-181.

Tatli, Z., & Ayas, A. (2013). Effect of a Virtual Chemistry Laboratory on Students’

Achievement. Educational Technology & Society, 16(1), 159–170.

Tłaczała, W., Gorghiu, G., Glava, A., Bazan, P., Kukkonen, J., Mąsior, W., ... &

Zaremba, M. (2006). Computer simulation and modeling in virtual physics experiments. In Proceedings of IV International Conference on Multimedia and Information & Communication Technologies in Education.

Wang, C. Y., Wu, H. K., Wen-Yu Lee, S., Hwang, F. K., Chang, H. Y., Wu, Y. T., ...

& Lo, H. C. (2014). A review of research on technology-assisted school science laboratories. Journal of Educational Technology & Society, 17(2).

Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice. Science education, 87(1), 112-143.

Yaman, M., Nerdel, C., & Bayrhuber, H. (2008). The effects of instructional support and learner interests when learning using computer simulations. Computers and Education, 51(4), 1784–1794.

Yılmaz, H., & Çavaş, P. H. (2006). The Effect Of The 4-E Learning Cycle Method On Students’ Understanding Of Electricity. Journal of Turkish Science Education, 3(1), 2-5.

Zhou, F., Been-Lirn Duh, H., & Billinghurst, M. (2008). Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR, 193–202.

80

附錄一 單極馬達實驗先備知識測驗

性別:□男 □女 ______年______班 座號:______姓名:____________

一、 選擇題,共 15 題,每題 5 分

1.

( )

如圖所示,一直導線懸於兩磁極中間,其長度方向與磁場方向垂直。

當導線上通有由南向北的電流,如圖所示,則導線受到磁場的作用,

所受磁力的方向為何?

(A)向西 (B)向東 (C)向上 (D)向下。

2.

( )

如圖中,將一 U 形磁鐵靠近一載流導線,則何圖所示導線之運動方 向正確?( 表示磁鐵運動方向, 表示導線運動方向)

(A) (B) (C) (D)

3.

( )

關於磁力線的敘述,下列何者錯誤?

(A)磁力線為圓滑曲線且永不相交 (B)越靠近磁極,磁力線會越密集 (C)磁鐵外部磁力線是由N極指向S極 (D)赤道上空的磁力線是向南 4.

( )

一磁棒的N極與S極如圖所示。若將此磁棒由中央截成甲、乙兩段小

磁棒,取這兩段小磁棒分別靠近與圖中相同的磁針,則下列示意圖中

,何者最不可能為實際情況?

(A) (B) (C) (D)

5.

( )

若你所在之處有方向向上的磁場存在,一做直線運動的電子向你飛來