• 沒有找到結果。

第五章 結論與建議

5.2 建議

1.除了金屬銅觸媒以外,氧化銀、氧化鉻、氧化汞等金屬觸媒亦是吸附 氫化物系氣體的活性成份物種,各物種與沸石擔體結合後之吸附效能 及吸附容量可以做進一步探討。

2.吸附完後之吸附劑再通入空氣,會發生氧化反應且氧化過程會放熱,

可以藉由量測吸附劑反應溫度變化,探討溫度高低與吸附效率或吸附

容量的關係。

3.藉由改變吸附劑填充量,或由吸附濃度變化曲線圖,來推估吸附帶寬 度,研究上不但可以節省測試時間,並且可以減少吸附劑的使用量。

4.吸附測試往往會有壓降問題產生,Cu/Y zeolite 吸附劑比 Cu/ZSM-5 zeolite 吸附劑容易產生壓降,即使在相同條件測試下所產生的壓降大 小亦有些微不同,影響實驗重複性,未來可以繼續探究降低壓降的方 法或找出更理想的實驗操作參數。

5.未來可以進行硝酸銅溶液減量測試,即在維持相同含浸濃度下逐量減 少硝酸銅溶液之總體積,或是重複使用硝酸銅溶液,在銅真正披覆量 未大量減少之前,可以藉此減少硝酸銅藥品使用量,降低成本。

第六章 參考文獻

1. 鄭凱文,淺談半導體製程廢氣處 理,台灣環保產業雙月刊,18 期,

2003。

2. Cotton M. L., Johnson N. D. and Wheeland K. G.(1977) “Removal of Arsine From Process Emissions”, The Metallurgical Society of CIM, 205-209

3. Hayes M., Woods K. (1996) “Treating semiconductor emissions with point-of-use abatement systems”, Solid State Technology, 39(10), 141 4. Hardwick S.J., and Mailloux J.C. (1994), “Waste minimization in

semiconductor processing”, Materials Research Society, 344, 273-279 5. Colabella J.M., Stall R.A. and Sorenson C.T. (1988) “The Adsorption and

Subsequent Oxidation of AsH3 and PH3 on Activated Carbon”, Journal of

Crystal Growth, 92, 189-195

6. 工業技術研究院環境與安全衛生技術發展中心,危害物質危害數據資 訊資料庫,1990 年 3 月,

http://www.cesh.itri.org.tw/intro/esafty/msds.htm

7. Leondaridis P., Vendel A.S. and Akthar T. (1990) “Removal of Gaseous Hydrides”, United States Patent, 5,182,088

8. 福田秀樹、大塚健二、古浦永生(1998),有害氣體之淨化劑及淨化 方法,專利說明書,460313。

9. Haacke G., Brinen J. S. and Burkhard H.(1988), “Arsine adsorption on activated carbon.”, J. Electrochem. Soc.: solid-state science and

technology, 135(3), 715-718

10. 吳榮宗,工業觸媒概論,國興出版社,新竹市,1989 年 8 月增訂版。

11. 顏秀慧(1998),沸石對揮發性有機物吸附行為之研究,國立台灣大學

14. Corma A. (1997). “From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis”, Chem. Rev., 97, 2373-2419 15. Cao D.V. and Sircar S. (2001) “Heat of Adsorption of Pure Sulfur

Hexafluoride on Micro-Mesoporous Adsorbents”, Adsorption, 7, 73-80 16. D´ıaz E., Ord´o˜nez S., Vega A. and Coca J. (2004). “Adsorption

characterisation of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography”, Journal

of Chromatography A., 1049, 139-146

17. Gervasini A. (1999), “Characterization of the textural properties of metal loaded ZSM-5 zeolites.”, Applied Catalysis A: General, 180, 71-82 18. Gil A. (1998) “Analysis of the Micropore Structure of Various

Microporous Materials from Nitrogen Adsorption at 77 K”, Adsorption, 4, 197-206

19. Ivanov A.V., Graham G.W. and Shelef M. (1999) “Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO2/Al2O3 ratios: a combined FTIR and gravimetric study”, Applied Catalysis B:

Environmental, 21, 243

20. Clausse B., Garrot B., Cornier C., Paulin C., Simonnot-Grange M.H. and Boutros F. (1998) “Adsorption of chlorinated volatile organic compounds on hydrophobic faujasite- correlation between the thermodynamic and

kinetic properties and the prediction of air cleaning”, Microporous and

Mesoporous Materials, 25(1-3), 169-177

21. Beutekamp S. and Harting P. (2002). “ Experimental Determination and Analysis of High Pressure Adsorption Data of Pure Gases and Gas Mixtures ”, Adsorption ., 8, 255-269

22. Chintawar P. S. and Greene H. L. (1997). “Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites”, Applied

Catalysis B:Environmental., 14, 37-47

23. Baek S.W., Kim J.R. and Ihm S.K. (2004). “Design of dual functional adsorbent/catalyst system for the control of VOC’s by using metal-loaded hydrophobic Y-zeolites .”, Catalysis Today, 93–95, 575-581

24. Tantet J., Eic M. and Desai R. (1995). “ Breakthrough study of the adsorption and separation of sulfur dioxide from wet gas using

hydrophobic zeolites.”, Gas Separation and Purification,9(3), 231-220 25. Pinna F. (1998). “Supported metal catalysts preparation.”, Catalysis

Today, 41, 129-137

26. 白曛綾,林育旨(2005),中孔洞吸附材料應用於空氣污染控制,界面 科學會誌,27,1-16

27. Tsai W.T. (2002). “A review of environmental hazards and adsorption recovery of cleaning solvent hydrochlorofluorocarbons (HCFCs)”,

Journal of Loss Prevention in the Process Industries, 15, 147-157

28. Yong Z., Mata V. and Rodrigues A. E. (2002). “Adsorption of carbon

dioxide at high temperature—a review”, Separation and Purification

Technology, 26, 195-205

29. Zhao X.S., Ma Q. and Lu G. Q. (1998). “ VOC Removal: Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon”, Energy and

Fuels, 12, 1051-1054

30. Hu X., Qiao S., Zhao X. S. and Lu G.Q., (2001). “Adsorption Study of Benzene in Ink-Bottle-Like MCM-41.”, Ind. Eng. Chem. Res., 40,

862-867

31. 李秉傑,邱宏明,王奕凱(譯),非均勻系催化原理與應用,渤海堂文 化事業,台北市,1988 年 2 月初版。

32. Halliche D., Cherifi O., Auroux A. (2005), “Microcalorimetric studies and methane reforming by CO2 on Ni-based zeolite catalysts.”,

Thermochimica Acta, 434, 125-131

33. Lucas A. D., Valverde J.L., Dorado F., Romero A. and Asencio I. (2005).

“Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOX over mordenite and ZSM-5.”,

Journal of Molecular Catalysis A: Chemical, 225, 47-58

34. Gutiérrez-Ortiz J.I., López-Fonseca R., Aurrekoetxea U., and

González-Velasco J.R. (2003). “Low-temperature deep oxidation of dichloromethane and trichloroethylene by H-ZSM-5-supported manganese oxide catalysts.”, Journal of Catalysis, 218, 148-154

35. Lee H. K., Shim M. J., Lee J. S. and Kim S. W. (1996). “Characteristicsof CO gas adsorption on modified natural zeolite”, Materials Chemistry and

Physics., 44, 79-84

36. Richter M., Berndt H., Eckelt R., Schneider M. and Fricke R. (1999)

“Zeolite-mediated removal of NOx by NH3 from exhaust streams at low temperatures.”, Catalysis Today, 54, 531-545

37. Bentrup U., Brückner A., Richter M. and Fricke R. (2001). “NOx

adsorption on MnO2- NaY composite-an in situ FTIR and EPR study.”,

Applied Catalysis B: Environmental, 32, 229-241

38. Kundakovic L. and Stephanopoulos M. F. (1999). “Deep oxidation of methane over zirconia supported Ag catalysts.”, Applied Catalysis A:

General, 183, 35-51

39. Kazansky V.B., Borovkov V.Y., Serikha A.I., Santen R.A.V. and

Anderson B.G. (2000) “Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by

incipient wetness impregnation”, Catalysis Letters, 66, 39

40. Webb P. A. and Orr, C., (1998) “Analytical Methods in Fine Particle Technology”, Micromeritics, USA.

41. El-Shobaky G.A., Fagal G.A. and Mokhtar M. (1997). “Effect of ZnO on surface and catalytic properties of CuO-Al2O3 system.”, Applied

Catalysis A: General, 155, 167-178

42. Karger J. and Ruthven D. M. (1992), “Diffusion in zeolites and other microporous solids”, JOHN WILEY &SONS, INC., Canada.

43. Kim Y. S., Hamamura H. and Shimogaki Y. (2002). “Adhesion

Characteristics between Chemical Vapor Deposited Cu and TiN Films:

Aspects of Process Integration.”, Jpn. J. Appl. Phys., 41, 1500–1506.

附錄

本研究曾考量經濟成本因素,選用單位價格較便宜的NaY型沸石 (Davison, USA),進行PH3氣體吸附容量測試,但測試過程中發現,

Cu/NaY zeolite吸附劑吸附時產生之壓降很大,且吸附容量受到壓降影響 甚距,導致重複性不佳,因此將其測試結果以圖方式呈現於附錄。

0 1 2 3 4

Conc. of Cu(NO3)2

(mole/ L)

5 0

5 10 15 20 25 30 35 40 45 50

A d so rp ti o n ca p a ci ty

(mgPH 3/g ads.)

附錄圖1: 在不同含浸濃度下,Cu/NaY zeolite吸附劑對PH3氣體的吸附容 量圖

相關文件