• 沒有找到結果。

第五章 縮尺鹽水模型實驗

5.5 未來展望

目前的實驗,是以單一空間為模型,在未來的實驗中,必需再研究更多 不同的模型,例如有隔間的,有走廊的,有出風口,有門的等,以符合實 際居住環境或活動空間的環境,讓縮尺實驗更能對應全尺實驗的結果,更 發揮縮尺實驗經濟效益高,結果也能相符合的特性。

圖六十四、多隔間建築物圖

第六章 結論與未來展望

此第一期計畫的結案報告就火載量、火柱模式、能量及室溫、煙的產 生及煙控、撒水作用之質、熱傳及簡易之桌上型縮尺鹽水模型之建構等項 目進行探討,除獲得單一模式建立的初步結果外,實驗的架構及實驗數據 的整理法則等亦已具雛形。未來若能持續進行理論及實驗工作,將可獲得 更具意義的分析結果及實驗數據,俾能提升預估火災現象及其中各項因子 交互影響作用等二方面的能力。

計畫可能遇到的狀況與未來的展望列述如下:

1. 為避免所模擬火災事件與可能發生情況不符,排煙及撒水設備 與現今建管、消防所要求者有所出入,將視需要諮詢相關人員。

2. 將持續搜集有關資料,使模式的建立更具彈性,考慮的因素更 多,適用的範圍更大。

3. 第三期(為時一年)的計畫將進行大尺度煙流的實驗量測,於第二 期內將預作規畫,估算經費,並與主管當位溝通,期能於第三 期時能使用建研所或相關單位現已有的實驗場所及設備進行實 驗,若有需要,當添購設備或調整實驗場所,使實驗所得值更 能切合實際所需。

參考文獻

1. Friedman, R., "Status of Mathematical Modeling of Fires." FMRC Technical Report RC81-BT-5, Factory Mutual Research Corp., Boston, 1981.

2. Bengtsson, L., "Flashover, Backdraft and Smoke Gas Explosion from Fire Service Perpective" (in Swedish), Department of Fire Safety Engineering, Lund University, Lund, Sweden, 1998.

3. Kawagoe, K., "Fire Behaviour in Rooms," Report No.27, Building Research Institute, Tokyo, 1958.

4. Hinkly, P.L.and Wraight, H.G.H, "The Contribution of Flames Under Ceilings to Fire Spread in Compartments, Part II, Combustible Ceiling Linings," Fire Research Note No.743, 1969.

5. Waterman, T.E., "Room Flashover-Criteria And Synthesis," Fire Technology, 4, pp. 25-31,1968.

6. Friedman R., "Behavior of Fires in Compartments," International Symposium on Fire Safety of Combustible Materials, pp.100-133, Edinburgh University, 1975.

7. Thomas, P.H., and Bullen, M.L., "On The Role of KPC of Room Lining Materials in the Growth of Room Fires," Fire and Materials, 3, pp. 68-73, 1979.

8. Thomas, P.H., "Modelling of Compartment Fires," 6th International Fire Protection Seminar, Karlsruhe, pp29-46.Vereinigungzer Forderungdes Deutschen Brandschutyes,.ev.1982.

9. Edward K. Budinck and David D. Evans, "Hand Calculation For Enclosure Fires," Fire Protection Handbook. Vol. Sixteenth., pp 2-21,1986.

10. Lie, T.T.," Fire Temperature–Time Relations," The SFPE Handbook of Fire Protection Engineering, 1st ed., pp. 3-81~3-87,1988.

11. Walter W. Jones, "A Multicompartment Model for the Spread of Fire, Smoke and Toxic Gases," Fire Safety Journal, 9, 99. 55-79,1985.

12. 陳火炎,"建築物消防避難問題之研究",1982.

13. 丁育群, "高樓建築防火設施規劃設計之研究",1987.

14. 簡賢文,"建築物火災危險評估技術及應用之研究",1987

15. 王芳萍、鄧治東,"火災事件下熱流現象之分析" , 私立中原大學機械工 程研究所,碩士學位論文,1994.

16. 楊冠雄,"建築物防火之煙空設計分析",1996.

17. 楊冠雄,"建築物火災時煙流動特性之研究",1997.

18. 楊冠雄,"建築物火災時煙控系統運轉策略分析",1998.

19. 熊光華,"建築物防火性能檢驗測試及應用研究",1998.

20. 鍾基強,"建築物火災危險評估與煙控設計",1999.

21. 陳俊勳,"建築物火災危險評估電腦模式驗證研究",1999.

22. 楊冠雄,"建築物空調系統與煙控併用系統性能評估與設計準",1999.

23. Peacock, R.D., Forney G.P., Reneke, P., Portier, R. and Jones, W.W.,

"CFAST, the Consolidated Model of Fire Growth and Smoke Transport," NIST Technical Note 1299, U.S. Department of Commerce, Feb. 1993.

24. 鍾進偉,"火 災 熱 傳 現 象 之 初 步 分 析 ",國 科 會 暑 期 專 題 研 究 計 畫 報 告,NSC81-30115-C033-01,1991.

25. 洪啟仁, "火災事件下輻射熱傳之細部分析",國科會國內專任教學及研 究人員從事短期科技研究計畫成果報告,NSC82-0115-C033-0010,1992.

26. Walton, William D., and Budnick, Edward K.," Deterministic Computer Fire Models," Fire Protection Handbook, 17th ed. NFPA, pp. 10-86~10-92.

27. 王永生、鄧治東、羅國少,"地下捷運站火災及通風現象之研究", 中國 機械工程學會第十四屆全國學術研討會論文集, pp.559-566, Nov.27-28,

29. Lawson, J.R., and Quintiere, James, " Slide Rule Estimates of Fire Growth,"

Fire Technology, Nov., pp.267-292, 1985.

30. Beyler, Craig, "Flammability Limits of Premixed and Diffusion Flames," SFPE Handbook of Fire Protection Engineering, 1st ed., pp.

1-286~1-297, 1988.

31.Quintiere, J.G., "A Perspective on Compartment Fire Growth,"

Combustion Science and Technology, Vol. 39, pp. 11-54, 1984.

32. Heskestad, Gunnar, "Fire Plume Air Entrainment According to Two Competing Assumptions," 21st Int. Symp. on Comb., pp. 111-120, 1986.

33. Caffrey, Bernard, "Flame Height," SFPE Handbook of Fire Protection Engineering, 1st ed., pp. 1-298 ~ 1-305, 1988.

34. Cooper, Leonard Y.," The Development of Hazardous Conditions in Enclosures with Growing Fire," Combustion Science and Technology, Vol.33, pp.279-297, 1983.

35 Butcher, E.G., and Parnell, A.C., "Smoke Control in Fire Safety Design," E.

& F.N. Spon, 1979.

36 Quintiere, J.G., "Principles of Fire Behavior, Delmar Publishers,"

Chapter 8: Combustion Products, 1998.

37 Cooper, Leonard Y., "Compartment Fire – Generated Environment and Smoke Filling," SFPE Handbook of Fire Protection Engineering, 1sted., pp. 2-116~2-138, 1988.

38. Emmons, H.W., "Vent Flows," SFPE Handbook of Fire Protection Engineering, 1st ed., pp. 1-130~1-137, 1988.

39. Klote, J.H., and Fothergill, J.W. Jr., "Design of Smoke Control Systems for Building," National Bureau of Standard Handbook 141, 1983.

40. Gross, D., "Estimating Air Leakage through Doors for Smoke Control," Fire Technology, Feb., pp. 75-81, 1990.

41. McCaffrey, B.J., "Jet Diffusion Flame Suppression Using Water Sprays An Interim Report," Combustion Science and Technology, Vol. 40, pp107-136, 1984.

42. Nash, P., and Young, R.A., "Automatic Sprinkler Systems for Fire Protection," Victor Green Publications Limited, 1978.

43. You, H.Z.; Kung, H.C.; Han, Z.X., "Spray Cooling in Room Fire," 21st International Symposium on Combustion, pp. 129-136, 1986.

44. Fleming, R.P., "Automatic Sprinkler System Calculation," SFPE Handbook of Fire Protection Engineering, 1st ed., pp. 3-22~3-34, 1988.

45. Quintiere, J.; McCaffery, B.J.; and Kashiwagi, T., "A Scaling Study of a Corridor Subject to a Room Fire," Combustion Science and Technology, Vol. 18, pp. 1-19, 1978.

46. Milis A.F., Heat and Mass Transfer, 2nd ed., Irwin, 1998.

47. Babrauskas, V., in SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, MA, 1995.

48. Schifility, R.P., et al., in SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, MA, 1995.

49. Heskestad, G., "Fire Plumes," SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, MA, 1995.

50. McCaffrey, B.J., "Purely Buoyant Diffusion Flames: Some Experimental Results", NBSIR 79-1920, National Bureau of Standards, 1979.

51. McCaffrey, B., "Flame Height," SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, Quincy, MA, 1995.

52. Karlsson, B. and Quintiere, J.G., Enclosure Fire Dynamics, CRC Press, 2000.

53. Zukoski, E.E., Kubota, T., and Cetegen, B., "Entrainment in Fire Plumes,"

55. Zukoski,E.E., "Properties of Fire Plumes," in Combustion Fundamentals of Fire, Cox, G., Ed., Academic Press, London,1995.

56. Hasemi, Y. and Nishihata, M., "Fuel Shape Effects on the Deterministic Properties of Turbulent Diffusion Flames, " International Association of Fire Safety Science, Proceedings of the Second International Symposium, Hemisphere Publishing, pp. 275-284, Washington, D.C., 1989.

57. Alpert, R.L., "Calculation of Response Time of Ceiling-Mounted Fire Detectors," Fire Technology, Vol.8, pp. 181-195,1972.

58. You, H.Z. and Faeth, G.M., "An Investigation on Fire Impingement on a Horizontal Ceiling,"NBS-GCR-81-304, National Bureau of Standards, CFR, Gaithersburg, MD, 1981.

59. Steckler, K.D., Baum, H.R., Quintiere, J.G., "Salt Water Modeling of Fire Induced Flows in Multicompartment Enclosures," 21st Int. Symp. on Combustion, 1986, pp. 143-149.

60. Teng, J.T.; Chen, H.Y.; Hsu, C.H.; and Hung, C.R.; "An Evaluation on the Thermofluid Phenomena Under Fire Accident Condition," 1st and 2nd year reports, sponsored by the ROC-National Science Council, Nov. 1992 and Nov. 1993.

61.Stecker, K.D., Baum, H.R. AND Quintiere, J.G., “Salt Water Modeling of Fire Induced Flows in Multicompartment Enclosures,” National Bureau of Standards Gaithersburg, MD20899

62.”The Handbook of Fire Protection Engineering,” National Fire Protection Association

63. Walton, W.D. and Thomas, P.H., “Estimating Temperature in Compartment Fires,” SFPE Handbook of Fire Protection Engineering, 2nd ed., National Fire Protection Association, 1995.

64. Drysdale, D., An Introduction to Fire Dynamics, Wiley-Interscience, 1992.

65. McCaffrey, B.J., Quintiere, J.G., and Harkleroad, M.F., “Estimating Room Fire Temperature and the Likelihood of Flashover Using Fire Test Data Correlations,” Fire Technology. Vol. 17, No. 2, pp. 98-119, 1981.

66. Holman, J.P., Heat Transfer, 7th ed., McGraw-Hill, 1990.

67. Foot, K.L., Pagni, P.J., and Alvares, N.J., “Temperature Correlations for Forced Ventilated Compartment Fires,” Proceedings of the First International Symposium, International Association of Fire Safety Science, Hemisphere Publishing, pp. 139-148, 1986.

68. Mowrer, F.W. and Williamsson, R.B., Estimating room Temperature from Fires along Walls and in Corners,” Fire Technology, Vo. 23, No. 2, 1987.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Energy Release Rate Q (kW)

M ass Los s Rate = 3 g/s A s s um ed Heat of Com busion = 25 k J/g A ss um ed

圖六十五、能量釋放率與燃燒效率的關係圖

200 400 600 800 1000 1200 1400 1600 1800

0

Burning Object's Diameter D (m)

Flame Height L (m)

Energy Release Rate Q = 1690 kW Assumed

圖六十七、同一能量釋放率下,火焰高度與燃燒體直徑的關係圖

Energy Release Rate Q (kW)

B urning Objec t's Diam eter D (m )

Plume Temperature T (K)

E nergy Releas e Rate Q = 1690 k W A s s um ed

圖七十、火柱中心溫度與火柱高度的關係圖

火災排煙設備與自動撒水系統交互影響之研究案會議記錄

一、 時間:民國八十九年六月二日(星期五)上午九時三十分 二、 地點:中原大學機械系會議室工205 室

三、 主持人:鄧教授治東 四、 出席人員:

警察大學:簡教授賢文;建研所:蘇博士文瑜;消防署:陳專門委員文龍、

馮科長俊益。

五、 會議記錄:

(一) 本會議內容主要包括兩大部分:撒水液滴於火災環境中質量與熱傳變 化之討論,以及桌上型縮尺鹽水模型實驗之觀摩。

(二) 對於撒水啟動之後,通風口是否會因為水與熱、煙之交互作用而無法 動作,仍需要加以討論。

(三) 目前設計之空間較小,為了符合真實狀況,希望將來能延伸至使用於 大空間之狀態。

(四) 關於撒水後室內的熱傳現象,仍須加以考量。

(五) 在撒水實驗中,由於顏料出口的速度較快,所以剛開始應為 laminar flow ,建議宜考量改善方法,例如:出口改用 nozzle 等方式。然而,

於鹽水實驗時,因為出口的速度較大,所以可將之視為成長期,應屬 於 laminar flow 。同時,正因為速度快,較快達到 turbulent flow , 若用 nozzle 的話,出口的面積較大,速度會相對變小,可能達到 turbulent flow 所需的時間會變長,所以還需在進行實驗後才能確定。

火 災 排 煙 設 備 系 統 與 自 動 撒 水 系 統 交 互 影 響 之 研 究

( Ⅰ ) 中 華 民 國 建 築 學 會

2

0

0

0

統一編號 002244890248

相關文件