• 沒有找到結果。

第五章 三角積分調變器使用逐次逼近暫存式類比數位轉換器

6.2 未來展望

在本論文中,提出了兩個新穎的三角積分調變器架構。一為延遲數位前饋強 健式多級三角積分調變器,另一個是三角積分調變器使用逐次逼近暫存式類比數 位轉換器。在系統中利用架構的特性,來節省整個系統功率消耗。元件的設計方 面,也盡量地達到功率消耗與效能的最佳化。

首先,這裡將提出的延遲數位前饋強健式多級三角積分調變器架構,提出幾 點作討論。

1. 在調變器架構上,由於此架構為了消除兩級的量化雜訊,只留下數位前饋的 量化器雜訊,因此造成第二級必須處理較大的訊號,同時也必須承載較多電 容回授,而增加負載需求,這是此架構的一大缺點。這是未來架構可改良的 方向。

2. 在電路設計上,在有限的供應電壓下,將參考電壓設計為0.3V到0.9V的範圍,

因此,晶片則需產生額外的參考電壓源,若以供應電壓作為參考電壓,則可 簡化電路複雜度,這是可改善的方向。另外,在電容架構實現上,雖然在佈 局時已考量電容實現後可能產生的誤差,但仍有不足之處,如側邊電容架構 受製程變異影響仍大於垂直電容架構,此問題可參考[39]中的所提出的 metal-oxide-metal (MOM)電容架構,使用垂直電容架構,並且在有限的電路 實現面積下有效增加電容值。

接著,將提出的三角積分調變器使用逐次逼近暫存式類比數位轉換器,也提 出幾點作討論。

3. 在調變器架構上,由於此架構為了達成電路設計時的時間設計需求,將調變 器架構設計為CIBF架構,造成輸入訊號範圍嚴重的受限於架構本身,這是此 架構的一大缺點。這是未來架構可改良的方向。

4. 在電路設計上,為了避免訊號擺幅過大,而受到運算放大器非線性增益的影 響,造成調變器產生諧波失真,因此將參考電壓範圍縮小至0.7V到0.5V的範 圍,在電路設計上是一大缺點。因此增加參考電壓範圍是電路設計可改善的 目標。

參 考 文 獻

[1] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.

[2] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.

[3] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, “Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett., vol. 37, pp. 737-738, Jun. 2001

[4] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1996

[5] R. Schreier and G. C. Temes, Understanding Delta–Sigma Data Con verters: New York:

Wiley, 2004.

[6] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309-318, Mar. 1990.

[7] W. L. Lee and C. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in Proc.

IEEE Intel. Symp. Circuits Syst., 1987, pp.459-462.

[8] B. DelSignore, D. Kerth, N. Sooch, anf E. Swansooon, “ A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1311-1317, Dec. 1990.

[9] T. Ritoniemi, T. Karema, and H. Tenhunen, “The Design of Stable High Order 1-Bit Sigma-Delta Modulators,” in Proc. IEEE Intel. Symp. Circuits Syst., May 1990, pp.

3267-3270.

[10] P. Ferguson, A. Ganesan, R. Adarns, S. Vincelette, R. Libert, A. Volpe, D. Andreas, A.Charpentier, and J. Dattorro, “An 18b 20KHz Dual ΣΔ A/D Converter,” in Proc. ISSCC, Feb. 1991, pp. 68-292.

[11] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel,” A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE Intel. Symp. Circuits Syst., May 2001, pp. 376-379.

[12] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology,” IEEE J.

Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669 Dec. 2002

[13] P. Favrat, P. Deval, and M. J. Declercq, “An improved voltage doubler in a standard CMOS technology,” in Proc. IEEE Intel. Symp. Circuits Syst., Hong Kong, June 1997, pp.

249-252

[14] P. Favrat, P. Deval, and M. J. Declercq, “A high-efficiency CMOS voltage doubler,”

IEEE J. Solid-State Circuits, vol. 33, no. 3, pp.410-416, Mar. 1998.

[15] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, Jan. 1999 [16] G. Ahn, D. Chang, M. Brown, N. Ozaki, H. Youra, K. Hamashita, K. Takasuka,

G.Temes, and U. K. Moon, “0.6-V 82-dB Delta-Sigma Audio ADC using Switched-RCIntegrators,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2398-2461, Dec. 2005.

[17] L. Yao, M. S. J. Steyaert, and W. Sansen, “A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol.39, no.11, pp.1809-1818, Nov. 2004

[18] R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, Revised Second Edition, Wiley, IEEE Press, 2008.

[19] A. Lopez-Martin, S. Baswa, J. Ramírez-Angulo, and R. G. Carvajal, “Low-voltage super Class-AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE J.

Solid-State Circuits, vol. 40, no. 5, pp. 1068-1077, May 2005.

[20] C.-H. Kuo, D.-Y. Shi, and K.-S. Chang, “Low-Voltage Fourth-Order Cascade Delta–Sigma Modulator in 0.18-μm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 9, pp. 2450-2461, Sep. 2010.

[21] P. M. Figueiredo, and J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators” , IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 7, pp.

541-545, July 2006.

[22] Da-Huei Lee and Tai-Haur Kuo, “Advancing Data Weighted Averaging Technique for Multi-Bit Sigma-Delta Modulators” , IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 10, pp. 838-842, Oct. 2007.

[23] N. Maghari, S. Kwon, G.C. Temes and U. Moon, “Sturdy MASH Δ-Σ modulator,”

Electron. Lett., vol. 42, no. 22, pp. 1269-1270, Oct. 26, 2006.

[24] N. Maghari, S. Kwon and U. Moon, “74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.

[25] N. Maghari, S. Kwon, G. C. Temes, and U. Moon, “Mixed-Order Sturdy MASH Δ-Σ Modulator,” in Proc. IEEE Intel. Symp. Circuits Syst.,New Orleans, LA, May 2007, pp.

257-260.

[26] A. A. Hamoui, M. Sukhon, and F. Maloberti, “Digitally-Enhanced 2nd-Order ΣΔ Modulator with Unity-Gain Signal Transfer Function,” in Proc. IEEE Intel. Symp.

Circuits Syst., Seattle, WA, May 2008, pp.1664-1667.

[27] A. A. Hamoui, M. Sukhon, and F. Maloberti, “Digitally-Enhanced High-Order ΔΣ Modulators,” in Proc. IEEE Intel. Conf. Electron. Circuits Syst., St. Julien's, Aug. 31 2008-Sept. 3 2008, pp. 1115-1118.

[28] A. Gharbiya, and D. A. Johns, “On the implementation of input feedforward delta-sigma modulators,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 6, pp. 453-457, June 2006.

[29] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. New York, NY, USA, 2001.

[30] H. Park, K.g Nam, D. K. Su, K. Vleugels, and B. A. Wooley, “A 0.7-V 870-uW Digital-Audio CMOS Sigma-Delta Modulator,” IEEE J. Solid-State Circuits, vol. 44, no.

4, pp. 1078-1088, Apr. 2009.

[31] V. Peluso, P. Vancorenland, A. M. Marques, M. S. Steyaert, and W. Sansen, “A 900-mV low-power ΔΣ A/D converter with 77-dB dynamic range,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp.1887-1897, Dec. 1998.

[32] J. Sauerbrey, T. Tille, D. Schmitt-Landsiedel, and R. Thewes, “A 0.7V MOSFET-only switched opamp ΔΣ modulator in Standard Digital CMOS technology,” IEEE J.

Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669, Dec. 2002.

[33] J. Goes, B. Vaz, R. Monteiro, and N. Paulino, “A 0.9 V ΔΣ modulator with 80 dB SNDR and 83 dB DR using a single-phase technique,” in Proc. ISSCC, Feb. 2006, pp. 74-75.

[34] S. Kwo and F. Maloberti, “A 14mW Multi-bit ΣΔ Modulator with 82dB SNR and 86dB DR for ADSL2+,” in Proc. ISSCC, Feb. 2006, pp. 161-170.

[35] K.-P. Pun, S. Chatterjee, and P. R. Kinget, “A 0.5-V 74-dB SNDR 25-kHz continuous-time delta-sigma modulator with a return-to-open DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 496-507, Mar. 2007.

[36] J. Roh, S. Byun, Y. Choi, H. Roh, Y.G. Kim, and J.K. Kwon, “A 0.9-V 60-μW 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 361-370, Feb. 2008.

[37] A. Gharbiya, and D. A. Johns, “A 12-bit 3.125 MHz Bandwidth 0–3 MASH Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2010-2018, July 2009.

[38] Y. Chae, and G. Han, “Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 458-472 Feb.

2009.

[39] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure” , IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740 Apr. 2010.

相關文件