• 沒有找到結果。

未來展望

在文檔中 摘要 (頁 64-68)

第五章 實驗結果

6.2 未來展望

本論文所提出的即時電容概算模型是假設區塊在運作時,所需的電流是 一個靜態(Static)的電流,但是實際上,區塊在運作的過程中,所需的電流 是屬於動態(Dynamic)的電流,因此,在評估即時電容大小時,若能將區塊 運作過程中的電流需求是動態的因素考慮進來,評估出來的即時電容將會更 加準確。除此之外,評估完即時電容的大小之後,必需將即時電容整合到版 面規劃中,本論文的作法是將電容直接包住區塊,然後適當的調整區塊的外 形來改進版面規劃的面積,並沒有考慮到在佈局(Layout)時,電容的形狀是 有所限制的,並不能以任意的形狀包在區塊外面的。

雖然本論文所提出的即時電容概算模型以及整合到版面規劃中的方法 跟之前的學者[34,35]比較,均有獲得比較好的結果,若未來的研究能將以 上所提出的兩個問題加以考慮,所獲得的結果勢必會更好。

參考文獻

[1] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291–307, 1970.

[2] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection?

Technical Report RNR-93-012, NAS Systems Division, NASA, Moffet Field, CA, 1993.

[3] S. Hauck and G. Borriello. An evaluation of bipartitioning technique. In Proc.

Chapel Hill Conference on Advanced Research in VLSI, 1995.

[4] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on Computers, pages 62–81, 1989.

[5] L. A. Sanchis. Multiple-way network partitioning with different cost functions.

IEEE Transactions on Computers, pages 1500–1504, 1993.

[6] J. Cong, W. Labio, and N. Shivakumar. Multi-way VLSI circuit partitioning based on dual net representation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, pages 396–409, 1996.

[7] R. H. J. M. Otten, “Automatic Floorplan Design,” ACM/IEEE Design Automation Conference, pp.261–267, 1982

[8] D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,”

ACM/IEEE Design Automation Conference, pp.101–107, 1986

[9] T. Ohtsuki, N. Suzigama, and H. Hawanishi, “An Optimization Technique for Integrated Circuit Layout Design,” ICCST, pp. 67–68, 1970.

[10] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI Module Placement Based on Rectangle-Packing by the Sequence Pair,” IEEE Trans.

Computer-Aided Design, Vol. 15, pp.1518-1524, 1996.

[11] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module Placement on BSG-Structure and IC Layout Applications,” IEEE/ACM International Conference on Computer-Aided Design, pp.484–491, 1996.

[12] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for Block Placement based on Sequence Pair,” ACM Asia and South Pacific Design Automation Conference, pp.521–526, 2001.

[13] J. M. Lin and Y. W. Chang, “TCG: A Transitive Closure Graph-Based Representation for Nonslicing Floorplans,” ACM/IEEE Design Automation Conference, pp.764–769, 2001.

[14] P. N. Guo, C. K. Cheng, and T. Yoshimura, “An O-tree Representation of Nonslicing Floorplan and Its Applications,” ACM/IEEE Design Automation Conference, pp.268–273, 1999.

[15] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-trees: A New Representation for Nonslicing Floorplans,” ACM/IEEE Design Automation Conference, pp.458–463, 2000.

[16] J. M. Lin, Y. W. Chang and S. P. Lin, “Corner Sequence – A P-Admissible Floorplan Representation with a Worst Case Linear-Time Packing Scheme”, IEEE Transactions on VLSI Systems, Vol. 11, No. 4, pp. 679-686, 2003.

[17] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C. K. Cheng, and J. Gu, “Corner Block List: An Effective and Efficient Topological Representation of Nonslicing Floorplan,” IEEE/ACM International Conference on Computer-Aided Design, pp.8–12, 2000.

[18] K. Sakanushi and Y. Kajitani, “The Quarter-State Sequence(Q-Sequence) to Represent the Floorplan and Applications to Layout Optimization,” IEEE Asia

Pacific Conference on Circuits and Systems, pp.829-832, 2000.

[19] B. Yao, H. Chen, C. K. Cheng and R. Graham, “Revisiting Floorplan Representations,” ACM International Symposium on Physical Design, pp.138-143, 2001.

[20] F. Y. Young, C. N. Chu and Z. C. Shen, “Twin Binary Sequence: A Non-redundant Representation for General Non-Slicing Floorplan,” IEEE Transactions on Computer-Aided Design, Vol. 22, No. 4, pp.457-469, 2003.

[21] M.A. Breuer, “Min-Cut Placement”, J. Design Automation and Fault-Tolerant Computing 1(4):343-382, Oct. 1977.

[22] Sechen, Sangiovanni, “Timber wolf 3.2: A New Standard Cell Placement and Global Routing Package”, 23rd DAC, 1986, 432-439

[23] Hans Eisenmann and Frank M. Johannes“Generic Global Placement and Floorplanning”,Design Automation Conference (DAC),pp. 269-274, 1998.

[24] G. Sigl, K. Doll and F.M. Johannes, "Analytical placement: A Linear or Quadratic Objective Function?", Proc. DAC, pp427-432, 1991.

[25] Natarajan Viswanathan, and Chris Chong-Nuen Chu,“FastPlace: Efficient Analytical Placement using Cell Shifting, Iterative Local Refinement and a Hybrid Net Model “, ISPD 2004

[26] J. T. Yan and S. H. Lin, “Timing-constrained congestion-driven global routing,”

Asia-Pacific Design Automation Conference, pp.683-686, 2004.

[27] J. Hu and S. S. Sapatnekar, “A timing-constrained simultaneous global routing algorithm,” IEEE Trans. on Computer-Aided Design, Vol. 21, pp. 1025-1036, 2002

[28] Branin Jr. E. H., “The Aanlysis and Design of Power Distribution Nets on LSI Chips”,Proc. Of International Conference on Circuits and Computers, pp.

785-790, 1980

[29] Jaskirat Singh , Sachin S. Sapatnekar, “Topology Optimization of Structured Power/Ground Networks” , ISPD’04

[30] Chowdhury S, “Optimization Design of Reliable IC Power Networks Having General Graph Topologies”, Proceeding of 26th Design Automation Conference, 1989,787~790

[31] T.Mitsuhashi. and E. S. Kuh, “Power and Ground Network Topology Optimization for Cell Based VLSIs”, Design Automation Conference, pp. 524, 1992.

[32] X. D. Tan, C. J. Shi, D. Lungeanu, J. C. Lee and L. P. Yuan ,

“Reliability-Constrained Area Optimization of VLSI Power/Ground Networks Via Sequence of Linear Programmings,” Design Automation Conference, pp.156–161, 1999.

[33] T. Wang and C. C. Chen, “Optimization of the Power/Ground Network Wire-Sizing and Spacing Based on Sequential Network Simplex Algorithm,”

ISQED, pp. 157–162, 2002.

[34] L. Smith, “Decoupling capacitor calculations for CMOS circuits,” IEEE 3rd Topical Meeting of Electrical Performance of Electronic Packaging, pp.101-105, 1994.

[35] S. Zhao, K. Roy and C. K. Koh, “Decoupling capacitance allocation and its application to power-supply noise-aware floorplanning,” IEEE Transactions on Computer-Aided Design, Vol. 21, No. 1, pp.81-92, 2002.

[36] H. B. Bakoglu, J. T. Walker, and J. D. Meindl, “A symmetric clock-distrubution tree and optimized high-speed interconnections for reduced clock skew in ULSI and WSI circuits” in Proc. IEEE Int. Conf. Computer Design:VLSI in Computers, pp.118-122, 1986.

[37] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh,”Clock routing for high performance IC’s” in Proc. ACM/IEEE Design Automation Conf. pp.

573-579,1990

[38] T. H. Chao,Y. C.Hsu, J. M. Ho,K. D. Boese and A. B. Kahng,” Zero-skew clock routing with minimum wirelength” in IEEE Trans. Circuits and Systems

Ⅱ; Analog and digital Signal Processing , vol. 39, pp.799-814, Nov.1992.

[39] P. Saxena and S. Gupta, “On integrating power and signal routing for shield count minimization in congested regions," TCAD, April 2003.

在文檔中 摘要 (頁 64-68)

相關文件