• 沒有找到結果。

雖然在本論文當中,已經比較了在有力輔助與沒有力輔助的情形下,他們行 為模式與肌電訊號的差別,未來還有許多可以進一步研究的方向,茲列如下:

1.腦波方面:研究最終的目的是要探討力回饋對於神經可塑性之再造,要證實這 點必須從腦波方面的訊號來著手,我們需要了解有無力輔助訓練下,腦波具有什 麼樣的現象,再藉由觀察到的現象去修改我們的實驗設計。

2.行為模式方面:探討透過有無力輔助訓練,他們之間的差異性,實驗概念圖如 圖4.1 所示,首先將運動能力相同的受測者進行分群的動作,再進行實驗,比較 他們之間的異同。

圖 4.1 新實驗概念圖

3.肌電訊號方面:由於我們原先所採取的動作,是一個多維度的動作,所牽涉到 的肌肉族群過多,造成了分析上的困難,所以我們未來可將實驗設計改成單一維 度的動作,動用到最少的肌肉群,藉以找出肌電訊號與腦波之間對應關係,再進 行更複雜動作的實驗。

4.老年人方面:實際應用到老人時,需要多考慮增加哪些設計,例如增加休息時 間,改變圖形大小讓老人看起來更加的舒服,降低困難度,以及是否需要其他的

輔助工具。

5.在 EMG 訊號量測上,因在操作搖桿的時候,會有手腕彎曲的動作產生,故可 以加入手腕彎曲的肌肉為EMG 之通道,藉以得知手腕彎曲之情況。

6.發展出一套有用的力輔助復健系統,可以確實的減緩老人在運動感知區上的退 化現象。

參考文獻

[1] Tinetti M. E., Speechely M., and Ginter S. F.,“Risk factors for falls among elderly persons living in the community", New England Journal of Medicine, Vol. 319(26), pp. 1701-7, 1988.

[2] Tortora G. and Grabowski S., Principles of Anatomy and Physiology. (8th ed.), New York: HarperCollins College Publishers, 1996.

[3] Lumy S., “Use-dependent plasticity of human motor cortex in health and disease", IEEE Engineering in Medicine and Biology Magazine, pp. 36-39, 2005.

[4] Drubach D., The Brain Explained, Upper Saddle River, NJ: Prentice-Hall, 2000.

[5] Landers M., “Treatment-induced neuroplasticity following focal injury to the motor cortex", International Journal of Rehabilitation Research, Vol. 27, pp. 1-5, 2004.

[6] Nudo R. J., Plautz E. J., and Frost S. B.,“Role of adaptive plasticity in recovery of function after damage to motor cortex", Muscle Nerve, Vol. 24, pp. 1000-1019, 2001.

[7] Kostov A. and Polak M.,“Parallel man-machine training in development of EEG-based cursor control", IEEE Trans. Rehabilitation Engineering, Vol. 8(2), pp.

203-205, 2000.

[8] Middendorf M., McMillan G., Calhoun G., and Jones K. S.,“Brain-computer interfaces based on the steady-state visual-evoked response", IEEE Trans.

Rehabilitation Engineering, Vol. 8(2), pp. 211-214, 2000.

[9] Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., and Vaughan T. M.

“Brain-computer interfaces for communication and control", Clinical

Neurophysiology, Vol. 113(6), pp. 767-791, 2002.

[10] Merzenich M. M.,“Cortical plasticity contributing to variations in human performance ability", IEEE Proceedings of the 2nd International Conference on Development and Learning, 2002.

[11] Doyon J. and Benali H.,“Reorganization and plasticity in the adult brain during learning of motor skills", Curr. Opion. Neurobiol, Vol. 15, pp. 161-167, 2005.

[12] Tatsuya M., Keiichiro T., Benjamin K., and Mark H.,“Coherence Between Cortical and Muscular Activities After Subcortical Stroke", American Heart association.

Stroke, 2001.

[13] Nudo R. J., Wise B. M., SiFuentes F., and Milliken G. W.,“Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct", Science, Vol. 272, pp. 1791-1794, 1996.

[14] Frost S. B., Barbay S., Friel K. M., Plautz E. J., and Nudo R. J.,“Reorganization of remote cortical regions after ischemic brain injury: A potential substrate for stroke recovery", Journal of Neurophysiology,Vol. 89, pp. 3205-3214, 2003.

[15] Nudo R. J., Plautz E. J., and Frost S. B.,“Role of adaptive plasticity in recovery of function after damage to motor cortex", Muscle Nerve, Vol. 24, pp. 1000-1019, 2001.

[16] Grigore C. B., Viorel G. P., Mourad B., and Vincent R.H.,“A virtual-reality-based telerehabilitation system with force feedback", IEEE Transactions on Information Technology in Biomedicine, Vol. 4, No. 1, pp. 45-51, 2000.

[17] David J., Rares B., Alma S. M., Marilyn T., Grigore C. B., Sergei V. A., Michael R., and Howard P., “Virtual reality-enhanced stroke rehabilitation", IEEE Transactions on Neural System and Rehabilitation Engineering, Vol. 9, No. 3, pp.

308-318, 2001.

[18] Bambi R. B., Matthew F., Roberta L. K., and Yoky M., “Perceptual limits for a

robotic rehabilitation environment using visual feedback distortion", IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, NO. 1, pp.

1-11, 2005.

[19] Wensheng H., Jun Z., Yingtao J., Shan S., Annette S., Andr´e J. S., and Monique V.,

“A behavior study of the effects of visual feedback on motor output", 28th IEEE EMBS Annual International Conference, pp. 1273-1276, New York City, USA, 2006.

[20] Roberto C., Fabrizio P., Silvestro M., Alessandra M., Carmen D.,Chiara M. C., Paolo D., and Giuseppe M., “Robotic techniques for upper limb evaluation and rehabilitation of stroke patients", IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, No. 3, pp. 311-324, 2005.

[21] Hokyoo L., Yoshiyuki T., Tasuku M., Takafumi T., Yuko I., Yumi I., Keisuke S., and Takashi K., “Robotic techniques for upper limb evaluation rehabilitation of stroke patients", IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, No. 3, pp. 444-447, 2005.

[22] Hermano I. K. and Neville H., “Therapeutic robotics: a technology push", Proceedings of the IEEE, Vol. 94, No. 9, pp. 1727-1738, 2006.

[23] Hermano I. K., Neville H., Mindy L. A., and Bruce T. V., “Robot-aided neurorehabilitation", IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 6, No. 1, pp. 75-87, 1998.

[24] Sonya A., Yoky M., and Roberta K.,“Measuring just noticeable differences for haptic force feedback: implications for rehabilitation", Proceedings of the 10th Symp. On Haptic Interfaces For Virtual Envir. & Teleoperator Systs, 2002.

[25] Sheng B., Linhong J., and Zixi W.,“Robot-aided sensorimotor arm training methods based on neurological rehabilitation principles in stroke and brain injury patients", 27th IEEE EMBS Annual International Conference., pp. 5025-5027, 2005.

[26] Wen L., Lewis A. L., Manuel M., Jonathan B., Casey D. K., and Collins J. J.,

“Noise-enhanced vibrotactile sensitivity in older adults and patients with stroke and patients with diabetic neuropathy", Arch Phys Med Rehabil, Vol. 83(2), pp.

171-176, 2002.

[27] Kristen A. R., Thomas T. I., Peter G., and Collins J. J.,“Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli", Chaos, Vol. 8, pp. 599-603, 1998.

[28] Kiguchi K., Tanaka T., and Fukuda T.,“Neuro-fuzzy control of a robotic exoskeleton with EMG signals", IEEE Transactions on Fuzzy Systems, Vol. 12, no. 4, pp.

481-490, 2004.

[29] Graichen H., Englmeier K. H., Reiser M., and Eckstein F., “An in vivo technique for determining 3D muscular moment arms in different joint positions and during muscular activation – Application to the supraspinatus", Clinical Biomechanics, Vol. 16, no. 5, pp. 389–394, 2001.

[30] Murray W. M., Delp S. L., and Buchanan T. S., “Variation of muscle moment arm with elbow and forearm position", Journal of Biomechanics, Vol. 28, no. 5, pp.

513–525, 1995.

[31] Carlo J. D. L., “Surface electromyography: detection and recording", DelSys, 2002.

[32] Carlo J. D. L., “The use of surface electromyography in biomechanics", Journal of Applied Biomechanics, Vol. 13, no. 2, pp.135-163, 1997.

[33] Handa Y. and Hoshimiya N., “Functional electrical simulation for the control of the upper extremities", Medical Progress through Technology 12, pp. 51-63, 1987.

[34] Elaine N. M., Jon M., 馮宗函, 陳金山翻譯, 人體解剖學, Pearson, 2006.

[35] Angel E., Interactive Computer Graphics: a Top-Down Approach with OpenGL, Addison-Wesley, England, 2000.

[36] Chatzinkkos F., A 3D Case Study Using OpenGL, Version 1.0, 2000.

[37] Segal M. and Akeley K., The OpenGL Graphics System: A Specification, Version 1.2.1,1999.

[38] 辛柏陞, 虛擬實境手部功能訓練系統之設計開發與成效探討之研究, 國立中 央大學機械工程研究所博士論文, 1994。

[39] 馬麗菁, 林美珍, 統計學, 第二版, 華泰, 台北市, 民 89。

[40] 徐正會, 周承緯, 手部復健器之分類與分析, 精密機械與製造技術研討會, 2004。

附錄

在進行實驗的時候,我們使用了附錄 1 跟附錄 2 內的文件對受測者進行說 明,讓受測者得以了解整個的流程,並填寫問卷讓我們知道受測者在實驗前、實 驗中、以及實驗後的身心狀況,以及對我們實驗的建議和反應。在進行實驗一與 實驗二的時候,我們使用附錄1 跟受測者說明實驗流程。在進行實驗三的時候,

我們使用附錄2 跟受測者說明實驗流程,茲列如後:

實驗日期:

相關文件