• 沒有找到結果。

遙測學刊』,12(4):489-507。

李孟儒,2011,「利用近景影像提高三維建物模型之細化等級」,國立中央大學土

Processing of LIDAR and Image Data”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 36: 7-12.

Bertram, T. T., Bockb, T. T., Bulgakovc, A. G. and Evgenovd, A. A., 2014, “Generation the 3D Model Building by Using the Quadcopter”, Paper presented at the 31st,

International Symposium on Automation and Robotics in Construction and Mining, Sydney, Australia, July 9-11.

Böhm, J. and Haala, N., 2005, “Efficient Integration of Aerial and Terrestrial Laser Data for Virtual City Modeling Using Lasermaps”, Paper presented at the ISPRS Workshop Laser Scanning 2005, Enschede, the Netherlands, September 12-14.

Bulatov, D., Häufel, G., Meidow, J., Pohl, M., Solbrig, P. and Wernerus, P., 2014,

“Context-Based Automatic Reconstruction and Texturing of 3D Urban Terrain for Quick-Response Tasks”, ISPRS Journal of Photogrammetry and Remote Sensing, 93:

157-170.

Comaniciu, D. and Meer, P., 2002, “Mean Shift: A Robust Approach toward Feature Space Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):

603-619.

Denis, E. and Baillard, C ., 2010, “Refining Existing 3D Building Models with Terrestrial Laser Points Acquired from a Mobile Mapping Vehicle”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38: 195-200.

Eisenbeiss, H., 2004, “A Mini Unmanned Aerial Vehicle (UAV): System Overview and Image Acquisition”, Paper presented at the International Workshop on Processing and Visualization using High-Resolution Imagery, Pitsanulok, Thailand, November 18-20.

Ester, M., Kriegel, H. P., Sander, J. and Xu, X., 1996, "A density-based algorithm for discovering clusters in large spatial databases with noise", Paper presented at the International Conference on Knowledge Discovery in Databases and Data Mining, Portland, Oregon, August 2-4.

Fischler, M. A. and Bolles, R. C., 1981, “Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, Communications of the ACM, 24(6): 381-395.

Förstner, W. and Gülch, E., 1987, “A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centres of Circular Features”, Paper presented at the ISPRS Intercommission Workshop, Interlaken, Switzerland, June 2-4.

Fritsch, D., Becker, S. and Rothermel, M., 2013, “Modeling Façade Structures using Point Clouds from Dense Image Matching”, Paper presented at the International Conference on Advances in Civil, Structural and Mechanical Engineering, HongKong, August 3-4.

Furukawa, Y. and Ponce, J., 2010, “Accurate, Dense, and Robust Multiview Stereopsis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8): 1362-1376.

Gerke, M. and Xiao, J., 2014, “Fusion of Airborne Laserscanning Point Clouds and Images for Supervised and Unsupervised Scene Classification”, ISPRS Journal of Photogrammetry and Remote Sensing, 87: 78-92.

Golub, G. H. and Van Loan, C. F., 1980, “An Analysis of the Total Least Squares Problem”, SIAM Journal on Numerical Analysis, 17(6): 883-893.

Ho, H. T., 2009, 3D Surface Matching from Range Images using Multiscale Local Features, Unpublished doctoral dissertation, The University of Adelaide, Australia.

Joshi, R., 2014, Automated 3D feature extraction for simple geometry buildings using images for GIS data collection, Unpublished doctoral dissertation, University of Twente, Enschede, the Netherlands.

Kazhdan, M., Bolitho, M. and Hoppe, H., 2006, “Poisson Surface Reconstruction”, Paper presented at the fourth Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, June 26-28.

Images using a Hybrid Approach, Unpublished doctoral dissertation, University of Calgary, Canada.

Lowe, D. G., 2004, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision, 60(2): 91-110.

Mayer, H., 1999, “Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings”, Computer Vision and Image Understanding, 74(2): 138-149.

Nex, F., Gerke, M., Remondino, F., Przybilla, H., Bäumker, M. and Zurhorst, A., 2015,

“ISPRS Benchmark for Multi-Platform Photogrammetry”, Paper presented at the PIA15+HRIGI15 – Joint ISPRS conference, Munich, Germany, March 25-27.

Petrie, G. and Toth, C. K., 2009, “Terrestrial Laser Scanners.” pp. 87-128 in Topographic Laser Ranging and Scanning Principles and Processing, edit by Shan J. and Toth C. K., Boca Raton: CRC Press.

Previtali, M., Barazzetti, L., Brumana, R., Cuca, B., Oreni, D., Roncoroni, F. and Scaioni, M., 2014, “Automatic Façade Modelling using Point Cloud Data for Energy-Efficient Retrofitting”, Applied Geomatics, 6(2): 95-113.

Qin, R. and Gruen, A., 2014, “3D Change Detection at Street Level using Mobile Laser Scanning Point Clouds and Terrestrial Images”, ISPRS Journal of Photogrammetry and Remote Sensing, 90: 23-35.

Rau, J. Y., Jhan, J. P. and Hsu, Y. C., 2015, “Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classification in an Urban Environment”, Geoscience and Remote Sensing, 53(3): 1304-1319.

Remondino, F., Barazzetti, L., Nex, F., Scaioni, M. and Sarazzi, D., 2011, “UAV Photogrammetry for Mapping and 3D Modeling - Current Status and Future

Switzerland, September 14-16.

Rothermel, M., Haala, N., Wenzel, K. and Bulatov, D., 2014, “Fast and Robust Generation of Semantic Urban Terrain Models from UAV Video Streams”, Paper presented at the 22nd International Conference Pattern Recognition, Stockholm, August 24-28.

Shahzad, M. and Zhu, X. X., 2015, “Robust Reconstruction of Building Facades for Large Areas using Spaceborne TomoSAR Point Clouds”, Geoscience and Remote Sensing, 53(2): 752-769.

Tarsha-Kurdi, F., Landes, T. and Grussenmeyer, P., 2008, “Extended RANSAC Algorithm for Automatic Detection of Building Roof Planes from LiDAR Data”, The Photogrammetric Journal of Finland, 21(1): 97-109.

Vetrivel, A., Gerke, M., Kerle, N. and Vosselman, G., 2015a, “Identification of Damage in Buildings Based on Gaps in 3D Point Clouds from Very High Resolution Oblique Airborne Images”, ISPRS Journal of Photogrammetry and Remote Sensing, 105:

61-78.

Vetrivel, A., Gerke, M., Kerle, N. and Vosselman, G., 2015b, “Segmentation of UAV-Based Images Incorporating 3D Point Cloud Information”, Paper presented at the PIA15+HRIGI15 – Joint ISPRS conference, Munich, Germany, March 25-27.

Vosselman, G., Gorte, B. G., Sithole, G. and Rabbani, T., 2004, “Recognising Structure in Laser Scanner Point Clouds”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 46: 33-38.

Vosselman, G. and Maas, H. G., 2010, Airborne and Terrestrial Laser Scanning, Boca Raton:

CRC Press.

Reconstruction using Images Obtained by Unmanned Aerial Vehicles”, Paper presented at the ISPRS Zurich 2011 Workshop, Zurich, Switzerland, September 14-16.

Weinmann, M., Urban, S., Hinz, S., Jutzi, B. and Mallet, C., 2015, “Distinctive 2D and 3D Features for Automated Large-Scale Scene Analysis in Urban Areas”, Computers and Graphics, 49: 47-57.

Xiong, B., Elberink, S. O. and Vosselman, G., 2014a, “Building Modeling from Noisy Photogrammetric Point Clouds”, Paper presented at the ISPRS Technical Commission III Symposium, Zurich, Switzerland, September 5-7.

Xiong, B., Elberink, S. O. and Vosselman, G., 2014b, “A Graph Edit Dictionary for Correcting Errors in Roof Topology Graphs Reconstructed from Point Clouds”, ISPRS Journal of Photogrammetry and Remote Sensing, 93: 227-242.

Xiong, B., Jancosek, M., Elberink, S. O. and Vosselman, G., 2015, “Flexible Building Primitives for 3D Building Modeling”, ISPRS Journal of Photogrammetry and Remote Sensing, 101: 275-290.

Xu, S., Vosselman, G. and Elberink, S. O., 2014, “Multiple-Entity Based Classification of Airborne Laser Scanning Data in Urban Areas”, ISPRS Journal of Photogrammetry and Remote Sensing, 88: 1-15.

Zhang, J., Duan, M., Yan, Q. and Lin, X., 2014, “Automatic Vehicle Extraction from Airborne Lidar Data using an Object-Based Point Cloud Analysis Method”, Remote Sensing, 6(9): 8405-8423.

3. 網頁參考文獻

‧ 國

立 政 治 大 學

N a tio na

l C h engchi U ni ve rs it y

87

USGS(2008). Digital Aerial Imagery Calibration Range Requirements Version 0.2, EROS Remote Sensing Technology Project. Retrieved August 28, 2009 from USGS on the World Wide Web:

http://calval.cr.usgs.gov/digital_aerial_imaging_quality_assurance.php

相關文件