• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 155-162)

本文所研究之分析種類共十二種,利用 ANSYS 有限元素軟體分 析覆晶球柵陣列構裝體覆晶封裝層及球柵陣列封裝層錫球之應力-應 變行為,比較Double Power Law、Hyperbolic Sine Law 及 Norton 三種 潛變模型所得結果並代入兩種疲勞壽命預測公式進行比較,並做成以 下之結論:

1. 等效層之使用可有效且快速的分析複雜結構,再配合次結構的模 擬分析可得到與單一模型分析雷同之結果。

2. 由等效下層錫球及完整下層錫球之次結構分析可知,其應變反應 以完整下層錫球較小,故完整錫球之壽命也相對較高,尚需經過 驗證以加強等效層分析之可靠性。

3. 覆晶封裝層錫球可能破壞位置為對角線上最遠之錫球或錫球分 佈密度交界處之斜對角最遠位置;球柵陣列封裝層錫球可能破壞 位置在覆晶封裝層填膠導角正下方。吾人亦預期此處為最先發生 疲勞破壞位置。

4. 在次結構的分析中,每種潛變模型之錫球最先產生疲勞破壞位置 不盡相同,覆晶封裝層錫球最先破壞的位置約為錫球下端、錫球 焊墊(solder mask)及填充底膠交界處;球柵陣列封裝層最先破壞

位置在上端與錫球銲墊之交界處。

5. 在覆晶封裝層中,其構造較球柵陣列封裝層複雜,所顯示之應力 及應變趨勢會有突然改變之狀況,塑性應變造成的疲勞壽命較球 柵陣列封裝層短,潛變應變造成的疲勞壽命則視潛變模型而有所 不同。

6. 在錫球結構分析中,發現 Double Power Law 模型在低溫停留期的 應力釋放產生時間較兩種穩態潛變模型慢,Norton 模型對於溫度 週次的反應上較為敏感。

7. 吾人比較彈性、塑性及潛變剪應變數據後發現,在 TCT 測試中潛 變應變較其他兩者大,故可知錫球之潛變行為是造成錫球疲勞行 為的主要成因。

8. 在 TCT 測試中,錫球的遲滯曲線在溫度循環第二周次後有逐漸穩 定收斂之趨勢,故選用第三週次溫度循環可得較穩定結果。

9. 比較本文使用的疲勞壽命公式計算結果,Modified Coffin-Manson 計算所得壽命較高。兩種方式皆顯示,使用 Hyperbolic Sine 模型 時覆晶封裝層有較高壽命,其餘兩種潛變模型皆為球柵陣列封裝 層有較高壽命。

10. 在 以 Modified Coffin-Mason 疲 勞 壽 命 公 式 計 算 疲 勞 壽 命 時 Double Power Law 模型的下層錫球有無窮壽命且以 Creep-Fatigue

疲勞壽命計算公式計算時其值亦偏高,此一結果並不合理,可能 原因為考慮暫態之潛變模型影響。

11. 整體模擬結果其壽命較 2D 模型為低,故本文以三方向彈性、塑 性及潛變剪應變之模擬結果尚需實驗結果進行驗證比對。

參考文獻

[1] 鐘文仁,陳佑任,「IC 封裝製程與 CAE 應用(修訂版)」,全華科技圖 書股份有限公司,2005。

[2] ANSYS users manual 5.1, 1994

[3] 洪齊懋,「不同分析條件對電子構裝體在熱衝擊測試下錫球疲勞壽命 預測之影響」,碩士論文,中華大學機械與航太工程研究所,2005。

[4] 方智凱,「利用等溫及非等溫分析評估覆晶式球柵陣列構裝體在熱循 環及熱衝擊下錫球之疲勞壽命」,碩士論文,中華大學機械與航太工 程研究所,2004。

[5] J. H. L. Pang, T. H. Low, B. S. Xiong and F. X. Che, “Design For Reliability (DFR) Methodology For Electronnic Packaging Assemblies,”

IEEE Electronics Packaging Technology Conference, pp. 470-478, 2003.

[6] Y.-H. Pao, S. Badgley, R. Govila, L. Baumgartner, R. Allor and T. Cooper,

“Measurements of Mechanical Behavior of High Lead Lead-Tin Solder Joints Subject to Thermal Cycling,” Journal of Electronic Packaging, Vol.

114, pp. 135-145, 1992.

[7] F. Feustel., S. Wiese. and E. Meusel., ”Time-Dependent Material Modeling for Finite Element Analyses of Flip Chip,” IEEE 50th Electronic Components and Technology Conference, pp. 1548-1553, 2000.

[8] J. H Lau, Y.-H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” McGraw-Hill, New York, 1997.

[9] Rainer Dudek, Margareta Nylen, Andreas Schubert, Bemd Michel, Herbert Reichl, “An Efficient Approach to Predict Solder Fatigue Life and its Application to SM- and Area Array Components,” IEEE Electronic Components and Technology Conference, 1997.

[10] M. Ikemizu, Y. Fukuzawa, J. Nakano, T. Yokoi, K. Miyajima, H.

Funakura and E. Hosomi, “CSP Solder Ball Reliability,” IEEE Electronics Manufacturing Technology Symposium, pp. 447-451, 1997.

[11] K. H. Teo, “Reliability Assessment of Flip Chip on Board Connections,”

IEEE Electronics Packaging Technology Conference, pp. 269-273, 1998.

[12] J. H. L, Pang and T.-I. Tan, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subjected to Temperature Cycling Loading,” IEEE 48th Electronic Components and Technology Conference, pp. 878-883, 1998.

[13] S. Baba, Q. Wu, E. Hayashi and M. Watanabe, “ Flip-Chip BGA Applied High-Density Organic Substrate,” IEEE 49th Electronic Components and Technology Conference, pp. 243-249, 1999.

[14] Z. Qian, M. Lu, W. Ren and S. Liu, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behavior of Solder and Underfill,” IEEE 49th Electronic Components and Technology Conference, pp. 141-148, 1999.

[15] L. L. Mercado, V. Sarihan, Y. Guo and A. Mawer, ”Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages,” IEEE Transactions Advanced Packaging, Vol. 23, pp. 415-420, 2000.

[16] E. T. Ong, A. A. O. Tay and J. H. Wu, “Effect of Delamination on the Thermal Fatigue of Solder Joints in Flip Chips,” ITHERM Thermal and Termomechanical Phenomena in Electronic Systems, Vol. 2, pp. 200-207, 2000.

[17] J. H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis,” Journal of Electronic Packaging, Vol. 29, pp. 997-1002, 2001.

[18] L. Chen, Q. Zhang, G. Wang, X. Xie and Z. Cheng, “The Effect of Underfill and Its Material Models on Thermomechanical Behavior of a Flip Chip Package,” IEEE Transaction Advanced Packaging, Vol. 24, pp.

17-24, 2001.

[19] J. H. L. Pang, D. Y. R Chong and T. H. Low, “Thermal Cycling Analysis of Flip Chip Solder Joint Reliability,” IEEE Transactions Components and Packaging Technology, Vol. 24, Issue 4, pp. 705-712, 2001.

[20] B. Joiner and T. Montes, “ Thermal Performance of Flip Chip Ball Grid Array Packages,” IEEE Semiconductor Thermal Measurement and Management, pp. 50-56, 2002.

[21] Z. Liji, W. Li, X. Xiaoming, and W. Kemps, “An Investigation on Thermal Reliability of Underfill PBGA solder Joint,” IEEE Transactions Electronics Packaging Manufacturing, Vol. 25, pp. 284-288, 2002.

[22] S. Sahasrabudhe, E. Monroe, S. Tandon and M. Patel, “Understanding the Effect of Dwell Time on Fatigue Life of Packges Using Thermal Shock and Intrinsic Material Behavior,” IEEE 53rd Electronic Components and Technology Conference, pp.898-904, 2003.

[23] B. Cheng, L. Wang, Q. Zhang, X. Gao, X. Xie and W. Kempe,

“Reliability and New Failure Modes of Encapsulated Flip Chip on Board Under Thermal Shock Testing,” ICEPT Electronic Packaging Technology Proceedings, pp. 416-421, 2003.

[24] S. Moreau, T. Lequeu and R. Jerisian, “Comparative Study of Thermal Cycling and Thermal Shocks Tests on Electronic Components Reliability,” Microelectronics Reliability, Vol. 44, pp. 1343-1347, 2004.

[25] Tong Hong Wang, Yi-Shao Lai, Jenq-Dah Wu, “Effect of Underfill Thermomechanical Properties on Thermal Cycling Fatigue Reliability of Flip-Chip Ball Grid Array.” Journal of Electronic Packaging, Vol. 126, pp.560-564, 2004.

[26] ANSYS® Menu, “Newton-Raphson Procedure”, ANSYS Theory Reference, Reversion 5.5, pp. 15-28-40, 1998.

[27] 朱紹鎔譯,「材料力學」, 東華書局, 1982。

[28] L. F. Coffin, Jr., “Fatigue at High Temperature,” Fatigue and Elevated Temperatures, ASTM STP 520, pp. 5-34, 1973.

[29] S. S. Manson, “Thermal Stress and Low Cycle Fatigue,” New York:

McGraw-Hill, 1996.

[30] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joint During Power Cycling,” IEEE Trans. Comp. Hybrids, Manufact.

Technol., Vol. CHMT-6, pp. 52-57, 1983.

[31] H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Trans. Comp. Hybrids, Manufact. Technol., Vol. CHMT-9, No. 4, pp. 423-432, 1986.

.

在文檔中 中 華 大 學 (頁 155-162)

相關文件