• 沒有找到結果。

本實驗結論如下:

(1) 利用電化學處理法,能夠製備出管長為 6.08 至 33 μm 之 TiO2 nanotube,

以助於元件效率。

(2) 將 TiO2 nanotube 浸泡於 N719 染料 24 小時,結果發現管長越長,染料吸 附效果越佳。

(3) 封裝製程所使用的對電極玻璃,本實驗發現 FTO 與 ITO 並無影響效率轉 換,在成本考量上值得選購,因本研究無將 FTO 與 ITO 進行熱處理,

使得導電玻璃電阻值不會受到影響。

(4) 若光源如本實驗從對電極方向照入,則對極電極上之催化層越薄越好,

降低元件效率受到影響。

(5) 本實驗結果發現,目前使用管長 30 μm 進行封裝檢測,則得 Voc為 0.71 V,Jsc為 11.30 mA/cm2,FF 為 0.48,效率轉換可達 3.92%。

- 59 -

參考文獻

[1] M. A. Green, K. Emery, Y. H., W. Warta, ”Solar cell efficiency tables (version 33)”, progress in photovoktaics: research and applications, 17 (2009) 85-94.

[2] G. Fuhrmann, A. Bamedi, M. Obermaier, S. Rosselli, R. Ogura, K. Noda, G. Nelles, (2009, April), 3rd International conference on the industrialisation of DSC DSC-IC 09, Nara Prefectural New Public Hall Nara, Japan.

[3] B.

O'Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on

dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737.

[4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-baker, E. Muller, P.

Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis-X2Bis(2, 2‟-bi-charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”, J. Am. Chem. Soc. 115 (1993) 6382.

[5] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent- potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44 (1996) 119-155.

[6] P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Grätzel,

“Nanocrystalline electrochromic displays ”, Displays 20 (1999) 137-144.

[7] A. B. F. Martinson, T. W. Hamann, M. J. Pellin, J. T. Hupp, ”New architectures for dye-sensitized solar cells”, Chem. Eur. J., 14 (2008) 4458.

[8] E. W. McFarland, J. Tang, “A photovoltaic device structure based on

- 60 -

internal electron emission”, Nature, 421 (2003) 616-618.

[9] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Grätzel,

“Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics “, Adv. Mater. 12 (2000) 1263-1267.

[10] I. Bedja, S. Hotchandani, P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with Bis(2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) complex” J. Phys.

Chem. A, 98 (1994) 4133-4140.

[11] U. Diebold, “The surface science of titanium dioxide ”, Surface Science Reports, 48 (2003) 53-229.

[12] K. M. Reddy, S. V. Manorama, A. R. Reddy, ”Bandgap studies on anatase titanium dioxide nanoparticles”, Mater. Chem. and Phy., 78 (2003) 239-245.

[13] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras,

“Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity”, Langmuir, 20 (2004) 2900-2907.

[14] C.C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, “Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells”, J. Phys. Chem. C, 112 (2008) 19151.

[15] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker,

“Dye-sensitized solar cells based on oriented TiO2 nanotube arrays:

transport, trapping, and transfer of electrons”, J. Am. Chem. Soc., 138 (2008) 13364-13372.

- 61 -

“Investigation of sensitizer adsorption and the influence of protons on

current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J.

Phys. Chem. B, 107 (2003) 8981-8987.

[19] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science 4 (1999) 314-321.

[20] H. Arakawa, K. Sayama, K. Hara, H. Sugihara, T. Yamaguchi, M.

Yanagida, H. Kawauchi, T. Kashima, G. Fujihashi, S. Takano,

“Improvement of efficiency of dye-sensitized solar cell –optimization of titanium oxide photoelectrode-“, 3rd World Conference on Photovoltaic Energy Conversion (2003) 11-18.

[21] G. R. A. Kumara, S. Kaneko, M. Okuya, K. Tennakone,” Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor”, Langmuir, 18 (2002) 10493-10495.

[22] Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A.

Fujishima, “Fabrication of an efficient solid-state dye-sensitized solar cell”, Langmuir, 19 (2003) 3572-3574.

[23] B. O'Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL„NCS/CuSCN: initiation and potential mechanisms”, Chem.

Mater., 10 (1998) 1501-1509.

- 62 -

[24] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R.

A. De Silva, K. Tennakone, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide”, Sol. Energy Mater.

Sol. Cells, 69 (2001) 195-199.

[25] G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, K. Tennakone, “Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films:

enhancement of the efficiency”, J. Photochem. Photobiolo. A: Chem., 164 (2004) 183-185.

[26] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H.

Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies“, Nature, 395 (1998) 583-585.

[27] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, “Hybrid nanorod-polymer solar cells”, Science, 295 (2002) 2425-2427.

[28] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R.

Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials”, Snyth. Met., 125 (2001) 279-287.

[29] K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke, D.

Haarer, “Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells ”, Snyth. Met., 121 (2001) 1573-1574.

[30] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada, S.

Yanagida, “Photocurrent-determining processes in quasi-solid-state

- 63 -

dye-sensitized solar cells using ionic gel electrolytes”, J. Phys. Chem. B, , 107 (2003) 4374-4381.

[31] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye -sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials and Solar Cells, 70 (2001) 151-161.

[32] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank,

“Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101 (1997) 2576-2582.

[33] 伊艷紅,許澤輝,馮磊碩,楊書廷,李承斌,染料敏化太陽能電池對 電極的研究發展,材料報導:綜述篇,第 23 卷,第 5 期,2009,第 109-112 頁。

[34] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E.i Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell”, J. Electroan. Chem. 570 (2004) 257-263.

[35] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, J. T.

Hupp, “Advancing beyond current generation dye-sensitized solar cells”, Energy Environ. Sci., 1 (2008) 66-78.

相關文件