• 沒有找到結果。

雖然在西澳洲二疊紀時期的腕足動物化石所採樣的層位並沒有 詳細精確的資訊,不過還是利用保存良好的殼體部分重建了二疊紀時 期西澳洲的穩定碳氧同位素紀錄。

西澳洲的保存良好的殼體平均碳同位素紀錄與盤古大陸東邊的 烏拉爾山紀錄有相似的變化,這表示盤古大陸東邊副熱帶地區與古特 提斯海地區有著相似的海水循環條件。

在二疊紀時期,西澳洲地區氧同位素數值訊號皆顯示比同時期低 緯度區域(美國、烏拉爾山)及高緯度地區(東澳洲)有較大的訊號,暗 示著當時候 Carnarvon 盆地與 Canning 盆地為蒸發作用較旺盛的區域,

使得在當時 Carnarvon 盆地與 Canning 盆地為海水鹽度較高的環境。

45

參考文獻

王鈺、金鈺玕、方大衛編,1966,腕足動物化石,科學出版社,共 702 頁。

Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and

paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. Sl., eds, Stable isotopes in sedimentary geology: SEPM short Course, no. 10, p. 1-151.

Archbold, N.W., Shi, G.R., 1993, Aktastinian (Early Artinskian, Early Permian) 455 brachiopods from the Jimba Jimba Calcarenite, Carnarvon Basin, Western Australia. Proceedings of Royal Society of Victoria 105, 187-202.

Attendorn, H. G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: Chapman & Hall, London, 522p.

Brand, U., and Veizer, J., 1980, Chemical diagenesis of a

multi-component carbonate system-1. Trace elements: Journal of Sedimentary Petrology 50, p. 1219-1236.

Brand, U., Logan, A., Hiller, N., and Richardson, J., 2003, Geochemistry of modern brachiopods: applications and implications for

oceanography and paleoceanography: Chemical Geology, v. 198, p.

305-334.

Carpenter, S. J., and Lohmann, K. C., 1995, δ18O and δ13C values of modern brachiopod shells: Geochimica et Cosmochimica Acta, v. 59, no. 18, p. 3749-3764.

Compston, W., 1960, The carbon isotopic composition of certain marine invertebrates and coals from the Australian Permian. Geochim.

Cosmochim. Acta 18, 1-22.

Condon, M.A., 1965, The geology of the Carnarvon Basin, Western Australia. Part 1: Pre-Permian stratigraphy: Australia Bureau of Mineral Resources 77, 82p.

Craig, H., and Gordon, L. I., 1965, Isotopic oceanography; deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964. Occasional Pubblication

46

Narragansett Marine Laboratory, University of Rhode Island, 277-234.

Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v.

278, no. 10, p. 1345-1372.

Dixon, M and Haig, DW 2004, Foraminifera and their habitats within a cool-water carbonate succession following glaciation, Early Permian (Sakmarian), Western Australia: The Journal of Foraminiferal

Research 34, p.308-324.

Epstein, S., and Mayeda, T., 1953, Variation of O18 content of water from natural sources: Geochimica et Cosmochimica Acta, v.4, p. 213-224.

Fielding, C, R., Frank, T. D., Birgenheier, L. P., Rygel, M. C., Jones, A. T., and Roberts, J., 2008, Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia: a record of alternating glacial and

nonglacial climate regime: Journal of the Geological Society, London, v.165, p. 129–140.

Fluteau, F., Besse, J., Broutin, J. & Ramstein, G., 2001. The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeography, Palaeoclimatology, Palaeoecology 167, p. 39-71.

Frank, J. R., Carpenter, A. B., and Ogleshy, T.W., 1982,

Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (upper Cambrian), southeast Missouri:

Journal of Sedimentary Petrology, v.52, p. 631-638.

Gibbs, M. T., McAllister, P., Kutzbach, J. E., Ziegler, A. M., Behling, P.

J. & Rowley, D. B., 2002. Simulations of Permian Climate and Comparisons with Climate - Sensitive Sediments. Journal of Geology 110, p. 33-55.

Grossman, E. L., and Ku T-L., 1986, Oxygen and carbon isotope

fractionation in biogenic aragonite: temperature effects: Chemical Geology. (Isotope Geosciences Section) v. 59, p. 59–74.

Grossman, E. L., Zhang C., and Yancey, T.E., 1991, Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas:

Geological Society of America Bulletin, v. 103, p. 953-965.

47

Grossman, E. L., Mii, H. S., and Yancey, T. E., 1993, Stable isotopes in Late Pennsylvanian brachiopods from the United States:

Implications for Carboniferous paleoceanography: Geological Society of America Bulletin, v.105, p. 1284-1296.

Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B., Mazzullo, S. J., and Mii, H. S., 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v.268, p. 222-233.

Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L., 1994, Tropical temperature variations since 20,000 years ago; modulating

interhemispheric climate change: Science, v. 263, no. 5147, p.

663-665.

Hays, P. D., and Grossman, E. L., 1991, Oxygen isotope in meteoric

calcite cements as indicators of continental climate: Geology, v.19, p.

441-444.

Habermann, D., Neuser, R.D., and Richter, D.K., 1996, Ree-activated cathodoluminescence of calcite and dolomite:High Resolution

Spectrometric analysis of CL emission (HRS-CL): Sediment.Geol., v.

101, p. 1-7.

Haig, D. W., 2003, Palaeobathymetric zonation of foraminifera from lower Permian shale deposits of a high-latitude southern interior sea.

Marine Micropaleontology 49,p. 317-334.

Isbell, J.L., Miller, M.F., Wolfe, K.L. & Lenaker, P.A. 2003. Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan, M.A. & Archer, A.A. (eds) Extreme Depositional Environments:

Mega End Members in Geologic Time. Geological Society of America, Special Papers, 370, p. 5–24.

Ivany, L.C., and Runnegar, B., 2010, Early Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of seawater: Geology, v.38, p. 1027-1030.

Jones, A. T., Frank, T. D., Fielding, C. R., 2006, Cold climate in the eastern Australian mid to late Permian may reflect cold upwelling waters: Palaeogeography, Palaeoclimatology, Palaeoecology v.237, p.

48

370–377.

Kiehl, J.T., and Shields, C.A., 2005, Climate simulation of the latest Permian: Implications for mass extinction: Geology, v. 33, p.

757-760.

Korte, C., Jasper, T., Kozur, H. W., Veizer, J., 2005a, δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciations: Palaeogeography, Palaeoclimatology, Palaeoecology v.224, p. 333– 351.

Korte, C., Jones, P. J., Brand, U., Mertmann, D., Veizer, J., 2008, Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation:

Palaeogeography, Palaeoclimatology, Palaeoecology v.269, p. 1–16.

Kutzbach, J.E., Ziegler, A.M., 1994, Simulation of Late Permian climate and biomes with an atmosphere-ocean model: Comparisons with observations, in Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A., Valdes, P.J. (eds.), Palaeoclimates and their modeling: London, Chapman and Hall, p. 119–132.

Leonova, T.B., 1998, Permian ammonoids of Russia and Australia:

Proceedings of the Royal Society of Victoria 110, p. 157-162.

Lever, H., 2004, Climate change and cyclic sedimentation in the Mid-Late Permian Kennedy Group, Carnarvon Basin, Western Australia. Gondwana Research 7, p. 135-142.

Lowenstam, H. A., 1961, Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their

bearing on the history of the oceans: Journal of Geology, v. 69, no. 3, p. 241-260.

Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico:

Journal of Sedimentary Petrology, v. 44, p. 837-861.

Mii, H. S., Grossman, E. L., and Yancey, T. E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation:

Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.

49

Mii, H.S., Shi, G.R., Cheng, C.J., and Chen, Y.U., 2012, Permian

Gondwanaland paleoenvironment inferred from carbon and oxygen isotope records of brachiopod fossils from Sydney Basin, southeast Australia: Chemical Geology, v. 291, p. 87-103.

Mory, A.J., Backhouse, J., 1997, Permian stratigraphy and palynology of the Carnarvon Basin, Western Australia: Geological Survey of Western Australia, Report 51, 46p.

Mory, A.J., Haig, D.W. (compilers) 2011, Permian–Carboniferous geology of the northern Perth and southern Carnarvon basins, Western Australia — a field guide: Geological Survey of Western Australia. Record 2011/14, 65p.

Mory, A.J., Hocking, R.M. (compilers) 2011, Permian, Carboniferous and Upper Devonian geology of the northern Canning basin, Western Australia — a field guide: Geological Survey of Western Australia. Record 2011/16, 36p.

Nicoll, R.S., Metcalfe, I., 1998, Early and Middle Permian conodonts from the Canning and Southern Carnarvon Basins, Western Australia: their implications for regional biogeography and

palaeoclimatology: Proceedings of the Royal Society of Victoria 110, p. 419-461.

O'Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates: The Journal of Chemical Physics, v. 51, no. 12, p. 5547-5558.

Pérez-Huerta, A., Cusack, M., Jeffries, T. E., Williams, C. T., 2008, High resolution distribution of magnesium and strontium and the

evaluation of Mg/Ca thermometry in Recent brachiopod shells.

Chemical Geology 247, p. 229-241.

Pierson, B. J., 1981, The control of cathodoluminescence in dolomite by iron and manganese: Sedimentology, v. 28, p. 601-610.

Playford, P.E, Cope, R.N., Low, G.H., Cockbain, A.E., Lowry, D.C., 1975, Canning Basin, in Geology of Western Australia: Geological Survey of Western Australia Memoir 2, p. 319-371.

Popp, B.N., Anderson, T.F., Sandberg, P.A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic

50

limestones. Geol. Soc. Amer. Bull. 97, p. 1262–1269.

Savin, S. M., 1977, The history the Earth's surface temperature during the past 100 million year: Annual Review of Earth and Planetary

Sciences, v.5, p. 319-355.

Schrag, D. P., Hampt, G., and Murray, D. W., 1996, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean: Science, v. 272, no. 5270, p. 1930-1932.

Scotese, C. R., Boucot, A.J., and McKerrow, W. S., 1999, Gondwana palaeogeography and palaeoclimatology: Journal of African Earth Scince, v. 28, no. 1, p. 99-114.

Shackleton, N. J., and Opdyke, N., 1977, oxygen isotope and

paleomagnetic stratigraphy of equatorial Pacific core V28-238:

Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale: Quaternary Research, v.3, p. 39-55.

Spero, H.J., Mielke, K.M., Kalve, E.M., Lra, D.W., and Pak, D.K., 2003, Multisoecies approach to reconstructing eastern equatorial Pacific thermocline hydrography guring the past 360 kyr: Paleoceanography, v. 18, p. 1022.

Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States:

Geological Society of America Bulletin, v. 62, p. 399-416.

Veizer, J., Fritz, P., and Jones, B., 1986, Geochemistry of brachiopods, oxygen and carbon isotopic records of Paleozoic oceans:

Geochimica et Cosmochimica Acta, v. 50, no. 8, p. 1679-1696.

Veevers, J. J., and Powell, M., 1987, Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica, Geological Society of America Bulletin, v.

98, no. 4, p. 475-487.

Williams, A., 1968, Evolution of the shell structure of articulate

brachiopods: Palaeontological Association of London Special Papers in Paleontology, no. 2, 55p.

Zeng, J., Cao, C.Q., Davydov, V.I., Shen, S.Z., 2012. Carbon isotope

51

chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia.

Gondwana Research 21, p. 601-610.

Ziegler, A.M., Hulver, M.L., Roeley, D.B., 1997. Permian world topography and climate, in Martini, I.P. (Ed.), Late Glacial and Postglacial Environmental Changes—Quaternary, Carboniferous–

Permian and Proterozoic. Oxford Univ. Press, New York, p. 111–

146.

52

附錄一、西澳洲腕足動物化石殼體穩定碳氧同位素

Sample Analytical label δ13C(‰) δ18O(‰) genus Formation WAU187 WAU187L1 4.60 -0.29 Neospirifer Callytharra Formation WAU187 WAU187NL1 4.90 1.88 Neospirifer Callytharra Formation WAU187 WAU187NL2 5.29 1.51 Neospirifer Callytharra Formation WAU183 WAU183L1 6.03 0.05 Fusispirifer Hardman Formation WAU171 WAU171NL1 4.75 0.00 Fusispirifer Noonkanbah Formation WAU171 WAU171NL2 4.60 -0.01 Fusispirifer Noonkanbah Formation WAU170 WAU170NL1 6.64 0.43 Neospirifer Noonkanbah Formation WAU170 WAU170NL2 6.89 0.20 Neospirifer Noonkanbah Formation WAU169 WAU169L1 -4.42 -5.75 Neospirifer Noonkanbah Formation WAU167 WAU167L1 4.86 -0.31 Strophalosia Noonkanbah Formation WAU167 WAU167L2 5.08 -0.45 Strophalosia Noonkanbah Formation WAU166 WAU166L1 4.91 0.05 Strophalosia Noonkanbah Formation WAU166 WAU166L2 4.76 -0.03 Strophalosia Noonkanbah Formation WAU165 WAU165NL1 5.80 0.42 Fusispirifer Noonkanbah Formation WAU165 WAU165NL2 6.02 0.34 Fusispirifer Noonkanbah Formation WAU164 WAU164L1 1.77 -3.32 Fusispirifer Noonkanbah Formation

53

WAU164 WAU164NL1 5.01 0.82 Fusispirifer Noonkanbah Formation WAU163 WAU163NL1 3.44 0.06 Crassispirifer Noonkanbah Formation WAU151 WAU151NL+L1 4.53 -0.49 Spiriferella Wandagee Formation WAU151 WAU151NL+L2 4.24 -0.74 Spiriferella Wandagee Formation WAU150 WAU150L1 3.25 -1.19 Spiriferella Wandagee Formation WAU150 WAU150L2 2.62 -1.12 Spiriferella Wandagee Formation WAU150 WAU150NL+L1 4.26 -1.13 Spiriferella Wandagee Formation WAU150 WAU150NL+L2 4.31 -1.31 Spiriferella Wandagee Formation WAU149 WAU149NL1 4.01 -0.67 Spiriferella Wandagee Formation WAU149 WAU149NL2 3.75 -0.83 Spiriferella Wandagee Formation WAU148 WAU148L1 7.05 -0.43 Neospirifer Wandagee Formation WAU140 WAU140L1 5.34 -0.31 Fusispirifer *Quinnanie Shale Cundlego

Formation

WAU139 WAU139L1 3.78 -0.27 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU139 WAU139L2 4.30 -0.60 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU138 WAU138NL+L1 5.02 -0.22 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU138 WAU138NL+L2 5.02 -0.27 Fusispirifer *Quinnanie Shale Cundlego Formation

54

WAU137 WAU137NL1 5.14 0.05 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU137 WAU137NL2 5.08 -0.26 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU136 WAU136NL1 5.35 0.36 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU136 WAU136NL2 5.17 0.46 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU135 WAU135NL1 5.35 -0.45 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU135 WAU135NL2 5.36 -0.37 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU132 WAU132L1 3.10 -1.81 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU132 WAU132L2 2.77 -1.73 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU130 WAU130L1 1.92 -2.04 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU130 WAU130L2 3.13 -1.70 Fusispirifer *Quinnanie Shale Cundlego Formation

WAU129 WAU129L1 -3.79 -3.78 Spiriferella *Quinnanie Shale Cundlego Formation

WAU129 WAU129L2 -4.48 -4.41 Spiriferella *Quinnanie Shale Cundlego Formation

WAU128 WAU128L1 3.67 -1.17 Spiriferella *Quinnanie Shale Cundlego Formation

WAU128 WAU128L2 4.05 -0.96 Spiriferella *Quinnanie Shale Cundlego Formation

WAU128 WAU128L1 2.47 -1.76 Spiriferella *Quinnanie Shale Cundlego Formation

WAU128 WAU128L2 3.47 -1.42 Spiriferella *Quinnanie Shale Cundlego Formation

WAU127 WAU127L1 4.78 -0.68 Spiriferella *Quinnanie Shale Cundlego Formation

WAU127 WAU127L2 4.11 -2.19 Spiriferella *Quinnanie Shale Cundlego Formation

WAU127 WAU127L1 -2.05 -4.63 Spiriferella *Quinnanie Shale Cundlego Formation

WAU126 WAU126L1 2.93 -1.49 Spiriferella *Quinnanie Shale Cundlego Formation

WAU126 WAU126L2 3.13 -1.10 Spiriferella *Quinnanie Shale Cundlego Formation

WAU126 WAU126L3 -1.45 -2.84 Spiriferella *Quinnanie Shale Cundlego Formation

WAU126 WAU126L4 0.92 -2.22 Spiriferella *Quinnanie Shale Cundlego Formation

WAU125 WAU125L1 3.00 -1.00 Spiriferella *Quinnanie Shale Cundlego Formation

WAU125 WAU125L2 1.98 -1.91 Spiriferella *Quinnanie Shale Cundlego Formation

WAU125 WAU125L3 -2.14 -3.36 Spiriferella *Quinnanie Shale Cundlego Formation

WAU125 WAU125L4 1.87 -1.84 Spiriferella *Quinnanie Shale Cundlego Formation

WAU125 WAU125L5 0.44 -2.91 Spiriferella *Quinnanie Shale Cundlego Formation

WAU125 WAU125L6 0.66 -3.15 Spiriferella *Quinnanie Shale Cundlego Formation

55

WAU124 WAU124NL1 4.02 -0.43 Spiriferella *Quinnanie Shale Cundlego Formation

WAU124 WAU124NL+L1 4.62 -0.49 Spiriferella *Quinnanie Shale Cundlego Formation

WAU124 WAU124L1 3.06 -1.01 Spiriferella *Quinnanie Shale Cundlego Formation WAU110 WAU110NL1 3.97 0.03 Spiriferella Coyris&Madeline

Formations WAU110 WAU110NL2 4.17 -0.14 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_1 4.03 -0.72 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_2 4.48 -0.09 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_3 4.15 0.09 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_4 4.20 0.23 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_5 3.58 0.60 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_6 3.87 0.69 Spiriferella Coyris&Madeline

Formations WAU110 WAU110_A_7 3.78 0.40 Spiriferella Coyris&Madeline

Formations

56

WAU110 WAU110_A_8 3.81 0.37 Spiriferella Coyris&Madeline Formations WAU110 WAU110_A_9 4.07 0.22 Spiriferella Coyris&Madeline

Formations WAU109 WAU109NL1 4.13 0.22 Spiriferella Coyris&Madeline

Formations WAU109 WAU109NL2 4.22 0.07 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_1 4.20 -0.29 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_2 4.10 -0.06 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_3 4.33 0.09 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_4 3.95 -0.07 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_5 3.99 -0.13 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_6 3.75 0.04 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_7 3.77 -0.33 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_8 3.84 -0.20 Spiriferella Coyris&Madeline

Formations WAU109 WAU109_A_9 3.83 -0.39 Spiriferella Coyris&Madeline

Formations WAU108 WAU108NL1 4.31 0.30 Spiriferella Coyris&Madeline

Formations WAU108 WAU108NL2 4.50 0.22 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_1 4.83 0.30 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_2 4.60 0.40 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_3 4.68 0.13 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_4 4.32 0.42 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_5 4.33 0.30 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_6 4.38 0.39 Spiriferella Coyris&Madeline

Formations WAU108 WAU108_A_7 4.16 0.39 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_1 5.29 0.10 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_2 5.29 -0.01 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_3 5.10 -0.21 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_4 5.17 -0.27 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_5 5.06 -0.53 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_6 4.78 -0.45 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_7 4.75 -0.03 Spiriferella Coyris&Madeline

Formations

57

WAU107 WAU107_8 4.43 -0.09 Spiriferella Coyris&Madeline Formations WAU107 WAU107_9 4.50 -0.06 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_10 4.14 0.21 Spiriferella Coyris&Madeline

Formations WAU107 WAU107_11 4.54 0.30 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_1 5.23 0.26 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_2 5.19 0.24 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_3 5.19 -0.04 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_4 5.27 0.33 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_5 5.20 0.04 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_6 5.19 0.12 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_7 5.01 -0.08 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_8 5.10 0.18 Spiriferella Coyris&Madeline

Formations WAU106 WAU106_9 5.05 0.00 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_1 4.92 0.11 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_2 4.65 0.21 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_3 4.14 -0.14 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_4 4.05 -0.01 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_5 3.77 -0.20 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_6 4.21 -0.05 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_7 3.86 -0.03 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_8 3.73 -0.21 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_9 4.15 0.14 Spiriferella Coyris&Madeline

Formations WAU105 WAU105_10 3.78 -0.15 Spiriferella Coyris&Madeline

Formations WAU102 WAU102L1 2.81 -0.47 Crasispirifer Coyris&Madeline

Formations WAU102 WAU102NL+L1 3.87 0.45 Crasispirifer Coyris&Madeline

Formations WAU101 WAU101L1 3.64 0.75 Fusispirifer Coyris&Madeline

Formations WAU101 WAU101L2 3.65 0.53 Fusispirifer Coyris&Madeline

Formations WAU101 WAU101L3 2.67 -1.29 Fusispirifer Coyris&Madeline

Formations WAU101 WAU101L4 0.57 -3.19 Fusispirifer Coyris&Madeline

Formations

58

WAU100 WAU100L1 3.57 0.32 Fusispirifer Coyris&Madeline Formations WAU100 WAU100L2 4.09 0.24 Fusispirifer Coyris&Madeline

Formations WAU098 WAU098L1 2.85 -0.30 Fusispirifer Coyris&Madeline

Formations WAU098 WAU098L2 4.31 0.10 Fusispirifer Coyris&Madeline

Formations WAU097 WAU097L1 1.53 -0.96 Fusispirifer Coyris&Madeline

Formations WAU097 WAU097L2 1.77 -0.94 Fusispirifer Coyris&Madeline

Formations WAU095 WAU095L1 4.82 -0.15 Fusispirifer Coyris&Madeline

Formations WAU095 WAU095L2 4.76 -0.25 Fusispirifer Coyris&Madeline

Formations WAU094 WAU094NL1 3.71 -0.11 Fusispirifer Coyris&Madeline

Formations WAU094 WAU094NL2 3.72 -0.05 Fusispirifer Coyris&Madeline

Formations WAU093 WAU093L1 3.77 -0.35 Fusispirifer Coyris&Madeline

Formations WAU093 WAU093L2 2.73 -0.97 Fusispirifer Coyris&Madeline

Formations

59

60 WAU050 WAU050NL1 5.03 0.19 Spiriferella Callytharra Formation WAU050 WAU050NL2 5.04 0.29 Spiriferella Callytharra Formation WAU045 WAU045NL1 4.46 0.17 Neospirifer Callytharra Formation WAU045 WAU045NL2 4.79 0.31 Neospirifer Callytharra Formation WAU044 WAU044NL1 5.35 0.06 Spiriferella Callytharra Formation WAU044 WAU044NL2 5.12 0.03 Spiriferella Callytharra Formation WAU044 WAU044_A_1 5.31 -0.50 Spiriferella Callytharra Formation WAU044 WAU044_A_2 5.08 -0.39 Spiriferella Callytharra Formation WAU044 WAU044_A_3 5.04 -0.78 Spiriferella Callytharra Formation WAU044 WAU044_A_4 4.85 -0.64 Spiriferella Callytharra Formation WAU044 WAU044_A_5 4.88 -1.16 Spiriferella Callytharra Formation WAU044 WAU044_A_6 5.10 -0.56 Spiriferella Callytharra Formation WAU044 WAU044_A_7 5.07 -0.02 Spiriferella Callytharra Formation WAU044 WAU044_A_8 4.73 -0.62 Spiriferella Callytharra Formation WAU044 WAU044_A_9 4.86 0.29 Spiriferella Callytharra Formation WAU044 WAU044_A_10 4.35 -1.00 Spiriferella Callytharra Formation WAU044 WAU044_A_11 5.05 -0.79 Spiriferella Callytharra Formation WAU044 WAU044_A_12 4.98 0.06 Spiriferella Callytharra Formation WAU044 WAU044_A_13 5.00 -0.63 Spiriferella Callytharra Formation

61

WAU044 WAU044_A_14 5.06 -0.34 Spiriferella Callytharra Formation WAU044 WAU044_A_15 4.89 -0.38 Spiriferella Callytharra Formation WAU044 WAU044_A_16 4.63 -0.47 Spiriferella Callytharra Formation WAU044 WAU044_A_17 4.37 -0.40 Spiriferella Callytharra Formation WAU044 WAU044_A_18 4.34 -0.33 Spiriferella Callytharra Formation WAU044 WAU044_A_19 4.83 -0.55 Spiriferella Callytharra Formation WAU043 WAU043NL1 5.07 -0.01 Spiriferella Callytharra Formation WAU043 WAU043NL2 4.83 -0.15 Spiriferella Callytharra Formation WAU043 WAU043_A_1 5.37 0.33 Spiriferella Callytharra Formation WAU043 WAU043_A_2 5.35 0.38 Spiriferella Callytharra Formation WAU043 WAU043_A_3 5.22 0.07 Spiriferella Callytharra Formation WAU043 WAU043_A_4 5.38 0.12 Spiriferella Callytharra Formation WAU043 WAU043_A_5 5.16 0.64 Spiriferella Callytharra Formation WAU043 WAU043_A_6 4.88 0.23 Spiriferella Callytharra Formation WAU043 WAU043_A_7 4.54 0.02 Spiriferella Callytharra Formation WAU043 WAU043_A_8 4.89 -0.35 Spiriferella Callytharra Formation WAU043 WAU043_A_9 4.94 -0.08 Spiriferella Callytharra Formation WAU043 WAU043_A_10 4.68 0.19 Spiriferella Callytharra Formation WAU043 WAU043_A_11 4.44 0.29 Spiriferella Callytharra Formation WAU042 WAU042NL1 4.53 0.32 Spiriferella Callytharra Formation WAU042 WAU042NL2 4.46 0.13 Spiriferella Callytharra Formation WAU042 WAU042_A_1 4.63 -0.10 Spiriferella Callytharra Formation WAU042 WAU042_A_2 4.54 -0.23 Spiriferella Callytharra Formation WAU042 WAU042_A_3 4.48 -0.21 Spiriferella Callytharra Formation WAU042 WAU042_A_4 4.12 -0.10 Spiriferella Callytharra Formation WAU042 WAU042_A_5 4.23 -0.15 Spiriferella Callytharra Formation WAU042 WAU042_A_6 4.11 -0.11 Spiriferella Callytharra Formation WAU042 WAU042_A_7 4.16 -0.23 Spiriferella Callytharra Formation WAU042 WAU042_A_8 4.39 0.22 Spiriferella Callytharra Formation WAU042 WAU042_A_9 4.25 -0.34 Spiriferella Callytharra Formation WAU042 WAU042_A_10 4.36 0.12 Spiriferella Callytharra Formation WAU042 WAU042_A_11 4.18 0.46 Spiriferella Callytharra Formation WAU042 WAU042_A_12 4.00 -0.29 Spiriferella Callytharra Formation WAU042 WAU042_A_13 4.21 0.02 Spiriferella Callytharra Formation WAU041 WAU041L1 3.71 -1.36 Spiriferella Callytharra Formation WAU041 WAU041L2 3.74 -1.38 Spiriferella Callytharra Formation WAU040 WAU040L1 3.32 -0.79 Spiriferella Callytharra Formation WAU039 WAU039L1 2.91 -1.40 Spiriferella Callytharra Formation WAU038 WAU038L1 -6.26 -4.78 Spiriferella Callytharra Formation WAU037 WAU037NL1 4.90 0.04 Spiriferella Callytharra Formation

62

WAU037 WAU037NL2 4.36 0.16 Spiriferella Callytharra Formation WAU035 WAU035L1 4.28 -1.03 Spiriferella Callytharra Formation WAU035 WAU035L2 0.27 -2.83 Spiriferella Callytharra Formation WAU031 WAU031L1 4.53 -0.36 Spiriferella Callytharra Formation WAU031 WAU031NL1 4.92 -0.52 Spiriferella Callytharra Formation WAU031 WAU031NL2 4.70 -0.92 Spiriferella Callytharra Formation WAU031 WAU031NL3 4.47 -0.65 Spiriferella Callytharra Formation WAU030 WAU030L1 4.14 -0.27 Spiriferella Callytharra Formation WAU030 WAU030NL1 4.96 -0.40 Spiriferella Callytharra Formation WAU030 WAU030NL2 4.74 -0.74 Spiriferella Callytharra Formation WAU026 WAU026NL+L1 4.16 -0.22 Spiriferella Callytharra Formation WAU026 WAU026NL+L2 4.12 -0.20 Spiriferella Callytharra Formation WAU021 WAU021L1 2.06 -1.17 Sommeriella Callytharra Formation WAU021 WAU021L2 2.39 -0.99 Sommeriella Callytharra Formation WAU020 WAU020L1 1.48 -1.66 Sommeriella Callytharra Formation WAU020 WAU020L2 3.20 -0.65 Sommeriella Callytharra Formation WAU019 WAU019L1 2.30 -1.47 Sommeriella Callytharra Formation WAU018 WAU018L1 2.40 -1.70 Sommeriella Callytharra Formation WAU018 WAU018L2 6.02 -0.60 Sommeriella Callytharra Formation WAU017 WAU017L1 2.47 -0.78 Sommeriella Callytharra Formation WAU010 WAU010L1 2.07 -1.13 Spiriferella Callytharra Formation WAU009 WAU009L1 3.59 -0.03 Spiriferella Callytharra Formation WAU009 WAU009NL1 4.04 0.11 Spiriferella Callytharra Formation WAU009 WAU009NL2 4.32 0.11 Spiriferella Callytharra Formation

63

64

65

66

67

相關文件