• 沒有找到結果。

-10-4 Sm-1

綜合以上所述,本實驗中利用脈衝雷射沉積所得到之硒化銻熱電奈米結構薄 膜,在導電度明顯的提升之下,所得到之熱電性質將大幅的提升,相信可以明顯 提高硒化銻熱電薄膜材料在後續的應用發展上之價值。

參考文獻

1. D. M. Rowe, (ed.) CRC Handbook of Thermoelectrics: Macro to Nano, CRC, Boca Raton, 2005.

2. 王 亞 帆 Y. F. Wang, ”A study of grain boundary scattering effect on thermoelectric properties of Bi0.5Sb1.5Te3 thin films”,國立清華大學材料所碩士 論文 (2007)

3. A. Shakouri, “Recent Developments in Semiconductor Thermoelectric Physics and Materials”, Annu. Rev. Mater. Res. 41 (2011) 399.

4. G. J. Snyder, E. S. Toberer, “Complex thermoelectric materials”, Nature Materials 7 (2008) 105.

5. X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J.

Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren,

“Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy”, Appl. Phys. Lett. 93(2008) 193121.

6. S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. Jeffrey Snyder, “Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation”, Chem.

Mater. 18 (2006) 1873.

7. C Wood, “Materials for thermoelectric energy conversion”, Rep. Prog. Phys. 51 and G. Ramanath, “High Electrical Conductivity Antimony Selenide Nanocrystals

and Assemblies”, Nano Lett. 10 (2010) 4417.

10. R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, “Electronic structure of antimony selenide (Sb2Se3) from GW calculations”, Phys. Status Solidi B 248 3 (2011) 700.

11. S. Jayakumar, C. Balasubramanian, S. K. Narayandass Y, D. Mangalaraj, C.P.

Vallabhan, “Optical recording characteristics of Sb,Se, thin films using a CW-Ar+

laser”, Thin Solid Films 266 (1995) 62.

12. 尹邦躍, ”Nanotechnology 奈米時代”, 五男圖書出版。

13. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P.

Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Adv. Mater. 19 (2007) 1043.

14. K. Kishimoto, M. Tsukamoto, and T. Koyanagi, “Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by RF sputtering”, J. Appl. Phys. 92 9 (2002) 1.

15. K. Wang, H. W. Liang, W. T. Yao and S. H. Yu, “Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance”, J. Mater. Chem. 21 (2011) 15057

16. G. Tai, W. Guo, and Z. Zhang, “Hydrothermal Synthesis and Thermoelectric Transport Properties of Uniform Single-Crystalline Pearl-Necklace-Shaped PbTe Nanowires”, Cryst. Growth Des. 8 (2008) 2907.

17. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A.

Majumdar , and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451 10 (2008) 163.

18. R. Venkatasubramanian, T. Colpitts, B. O’Quinn, S. Liu, N. El-Masry,

“Low-temperature organometallic epitaxy and its application to superlattice

structures in thermoelectrics”, Appl. Phys. Lett. 75 (1999) 1104.

19. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413 11 October (2001) 120.

20. T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, “Thermoelectric Quantum-Dot Superlattices with High ZT”, J. Electron. Mater. 29 1 (2000) L1.

21. N. Peranioa, M. Winkler, D. Bessas, Z. Aabdina, J. Königb, H. Böttner, R.P.

Hermann, O. Eibl, “Room-temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi2Te3 and Sb2Te3 thin films”, J.

Alloys Compd. 521 (2012) 163.

22. X. Wang, K. Cai, and H. Liu, “Novel Gas-Induced-Reduction Route to Chalcogenide Nanostructures Taking Sb2Se3 as an Example”, Cryst. Growth Des.

11 (2011) 4759.

23. Z. Deng, M. Mansuripur, and A. J. Muscat, “Simple Colloidal Synthesis of Single-Crystal Sb-Se-S Nanotubes with Composition Dependent Band-Gap Energy in the Near-Infrared”, Nano Lett. 9 5 (2009) 2015.

24. X. Zheng, Y. Xie, L. Zhu, X. Jiang, Y. Jia, W. Song, and Y. Sun, “Growth of Sb2E3 (E = S, Se) Polygonal Tubular Crystals via a Novel Solvent-Relief-Self-Seeding Process”, Inorg. Chem. 41 (2002) 455.

25. R. Jin, G. Chen, J. Pei, J. Sun and Y. Wang, “Controllable synthesis and electrochemical hydrogen storage properties of Sb2Se3 ultralong nanobelts with urchin-like structures”, Nanoscale 3 (2011) 3893.

26. Y. Yu, R. H. Wang, Q. Chen, and L.M. Peng, “High-Quality Ultralong Sb2Se3 and Sb2S3 Nanoribbons on a Large Scale via a Simple Chemical Route”, J. Phys.

Chem. B 110 (2006) 13415.

27. B. Zhou, and J. J. Zhu, “Microwave-assisted synthesis of Sb Se submicron rods,

compared with those of Bi2Te3 and Sb2Te3”, Nanotechnology 20 (2009) 85604.

28. R. Jin, G. Chen, Q. Wang, J. Sun and Y. Wang, “A facile solvothermal synthesis of hierarchical Sb2Se3 nanostructures with high electrochemical hydrogen storage ability”, J. Mater. Chem. 21 (2011) 6628.

29. J. Lu, Q. Han, X. Yang, L. Lu, X. Wang, “Preparation of ultra-long Sb2Se3 nanoribbons via a short-time solvothermal process”, Mater Lett. 62 (2008) 2418.

30. T. Y. Zhai, M. Ye, L. Li, X. S. Fang, M. Y. Liao, Y. F. Li, Y. S. Koide, Y. Bando, and D. Golberg, “Single-Crystalline Sb2Se3 Nanowires for High-Performance Field Emitters and Photo detectors”, Adv. Mater. 22 (2010) 4530.

31. L. Guo, G. Ji, X. F. Chang, M. Zheng, Y. Shi and Y. Zheng, “Microwave-assisted synthesis of Sb2Se3 submicron tetragonal tubular and spherical crystals”, Nanotechnology 21 (2010) 606.

32. M. J. Kang T. J. Park D. Wamwangi, K. Wang, C. Steimer, S. Y. Choi, M. Wuttig,

“Electrical properties and crystallization behavior of Sbx-Se100-x thin films”, Microsyst Technol. 13 (2007) 153.

33. K.Y. Rajpure, C.H. Bhosale, “Effect of Se source on properties of spray deposited Sb2Se3 thin films”, Mater. Chem. Phys. 62 (2000) 169.

34. A.P. Torane, K.Y. Rajpure, C.H. Bhosale, “Preparation and characterization of electrodeposited Sb2Se3 thin films”, Mater. Chem. Phys. 61 (1999) 219.

35. H.-C. Chang and C.-H. Chen, “Self-assembled bismuth telluride films with well-aligned zero- to three-dimensional nanoblocks for thermoelectric applications”, CrystEngComm 13 (2011) 5956.

36. S.M. Metev and V.P. Veiko, “Laser-Assisted Microtechnology, 2nd Edition”, Springer Verlag (Berlin, New York). (1998).

37. J. A. Thornton, “High rate thick film growth”, Ann. Rev. Mater. Sci. 7 (1977) 239.

38. Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, M. Kong,

“Self-catalytic VLS growth and optical properties of single-crystalline GeO2

nanowire arrays”, Mater. Lett. 62 (2008) 1010.

39. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, N. A. Sanford,

“Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy”, J. Cryst. Growth 310 (2008) 3154.

40. D. Wang, D. Yu, M. Shao, J. Xing, Y. Qian, “Growth of Sb2Se3 whiskers via a hydrothermal method”, Mater. Chem. Phys. 82 (2003) 546.

41. H. W. Chang, B. Sarkar, and C. W. Liu, “Synthesis of Sb2Se3 Nanowires via a Solvothermal Route from the Single Source Precursor Sb[Se2P(OiPr)2]3”, Cryst.

Growth Des. 7 12 (2007) 2691.

42. J. Lu, Q. Han, X. Yang, L. Lu, X. Wang, “Preparation of ultra-long Sb2Se3 nanoribbons via a short-time solvothermal process”, Mater. Lett. 62 (2008) 2415 43. F. El-Salam, M. A. Afifi, E. El-Wahabb, “Electrical resistivity of crystalline

Sb2Se3”, Vacuum 44 2 (1993) 111.

44. K.Y. Rajpure, C.D. Lokhande, C.H. Bhosale, “Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium”, Thin Solid Films 311 (1997) 114.

45. C.D. Lokhande, "A novel method for the deposition of nanocrystalline Bi2Se3, Sb2Se3 and Bi2Se3-Sb2Se3 thin films-SILAR", Appl. Surf. S 182 (2001) 413.

附錄

此外我們也將利用在雷射波長 355 nm 之下,不同之沉積參數製備薄膜,嘗 試改變薄膜之奈米形貌與成分,進而改善其熱電性質,而其表面形貌與剖面形貌 如以下所示。

圖附錄-1 沉積溫度 200 oC,Ar 流量 50sccm,沉積五小時之 SEM 圖(a)低倍率表 面形貌、(b)高倍率表面形貌、(c)低倍率剖面圖、(d)高倍率剖面圖。

圖附錄-2 沉積溫度 250 oC,Ar 流量 20 sccm,沉積五小時之 SEM 圖(a)低倍率表 面形貌、(b)高倍率表面形貌、(c)低倍率剖面圖、(d)高倍率剖面圖。

圖附錄-3 沉積溫度 250 oC,Ar 流量 50 sccm,沉積 5 小時之 SEM 圖(a)低倍率表 面形貌、(b)高倍率表面形貌、(c)低倍率剖面圖、(d)高倍率剖面圖。

圖附錄-4 沉積溫度 400 oC,Ar 流量 20 sccm,沉積 5 小時之 SEM 圖(a)低倍率表 面形貌、(b)高倍率表面形貌、(c)低倍率剖面圖、(d)高倍率剖面圖。

為沉積溫度 200 oC 下,改變氣體流量使其達到 50 sccm,並且沉積五個小時 後之 SEM 圖,由圖附錄-1(b)可以觀察到在改變參數後,其薄膜的表面形貌已經 發生改變,呈現類似一利用片板狀聚集排列而成一較大顆粒的形貌,已和原本 200 oC 參數下沉積的 Nanoteeth 連續型薄膜有相當大的不同,並且薄膜的厚度大 概已達到約 500 nm。

圖附錄-2 為沉積溫度 250 oC,未改變氣體流量(20 sccm),沉積時間達到 5 個小時之薄膜形貌,由圖附錄-2(a)中可以看出其表面形貌改變不大,仍是以 Nanowing 為主的奈米薄膜形貌,但是薄膜的表面卻出現大量的裂縫,而薄膜的 厚度約是 850 nm。

圖附錄-3 為沉積溫度 250 oC,氣體流量改變為 50 sccm,沉積時間 5 小時後 之 SEM,可以由圖附錄-3(b)所示,薄膜的表面形貌已經發生改變,薄膜將會由 片板狀為主體隨機堆積排列而成,和原本 250 oC 參數下的 Nanowing 連續性薄膜 已有所不同,而其薄膜的厚度約已達到 1250 nm,比原本參數下的 150 nm 相對

厚了很多。

圖附錄-4 為沉積溫度 400 oC、未改變氣體流量(20 sccm)下、沉積 5 個小時,

沉積薄膜之 SEM,可以由圖附錄-4 (d)觀察到其表面形貌由原本 400 oC 參數下鍍 膜時由偏向圓柱狀的 Nanorod 組成的薄膜,改變為以片板狀為主體排列推積而成 的奈米薄膜,其厚度只有約 940 nm,並沒有因為沉積時間較久而達到較厚的厚 度,且此種參數下的薄膜形貌顯得較為連續。

相關文件