• 沒有找到結果。

5−2 未來展望

1. 本研究雖改變反應物濃度得到最佳製程長度與長寬比,但長時間成長 使奈米線陣列頂部有熔合現象、阻礙染料吸附,因此未來若能改善此 現象,將有助於光電轉換效率提昇。

2. 本研究雖以摻雜方式有效改善氧化鋅奈米線電極電子傳導能力以及吸 附染料狀態,但所製備之元件其元件阻抗仍高,使得在填充因子特性 上表現過低,影響元件光電轉換效率,未來可以在傳導層以及電解質 層中做努力。

3. 本研究觀察到適度摻雜鋁能對氧化鋅奈米線有改變其形貌、結構以及 染料吸附能力,未來可以在此現象上深入探討。

參考文獻 參考文獻 參考文獻 參考文獻

[1] German Advisory Council on Global Change, “World in transition: turning energy systems towards sustainability” (2003).

[2] 張品全, “科學發展”, 349 期 (2002) 22−29.

[3] http://solarpv.itri.org.tw

[4] http://www.globalwarmingart.com/

[5] http://www.electrosolar.co.uk

[6] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables”, Progress in Photovoltaics: Research and Applications, 16 (2008) 435−440.

[7] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O. B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agents−assisted hydrothermal method for dye-sensitized solar cells”, Electrochimica Acta, 53 (2008) 7869−7874.

[8] J. Wu, S. Hao, J. Lin, M. Huang, Y. Huang, Z. Lan, and P. Li, “Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells”, Crystal Growth & Design, 8 (1) (2008) 247−252.

[9] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G.

Boschloo, “Fast electron transport in metal organic vapor deposition grown dye−sensitized ZnO nanorod solar cells”, The Journal of Physical Chemistry B, 110 (2006) 16159−16161.

[10] A. V. Singh, R. M. Mehra, A. Yoshida, and A. Wakahara, “Doping mechanism in aluminum doped zinc oxide films”, Journal of Applied Physics, 95 (2004) 3640−3643.

[11] T. Oekermann, T. Yoshida, C. Boeckler, J. Caro, and H. Minoura,

“Capacitance and field−driven electron transport in electrochemically

[12] K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, “Studied of the adsorption process of Ru complexes in nanoporous ZnO electrodes”, Langmuir, 16 (2000) 4688−4694.

[13] Z. L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology”, Materials Science and Engineering R, 64 (2009) 33–71.

[14] R. Wang, L. H. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, Journal of Materials Research, 11 (1996) 1659−1664.

[15] S. Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2⁄(100) Si substrates”, Solid−State Electronics, 52 (2008) 1710−1716.

[16] A. Al−Hajry, A. Umar, Y. B. Hahn, and D. H. Kim, “Growth, properties and dye−sensitized solar cells–applications of ZnO nanorods grown by low−temperature solution process”, Superlattices and Microstructures, 45 (6) (2009) 529−534.

[17] C. D. Lokhande, P. M. Gondkar, R. S. Mane,V. R. Shinde, and S. H. Han,

“CBD grown ZnO−based gas sensors and dye−sensitized solar cells”, Journal of Alloys and Compounds, 475 (2009) 304−311.

[18] R. B. H. Tahar, “Structural and electrical properties of aluminum-doped zinc oxide films prepared by sol–gel process”, Journal of the European Ceramic Society, 25 (2005) 3301−3306.

[19] M. S. Jang, M. K. Ryu, M. H. Yoon, S. H. Lee, H. K. Kim, A. Onodera, and S. Kojima, “A study on the Raman spectra of Al-doped and Ga−doped ZnO ceramics”, Current Applied Physics, 9 (2009) 651−657.

[20] O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L.Chow, T. Shishiyanu, V.Sontea, E. Monaico, S. Railean, “Synthesis of nanostructured Al−doped zinc oxide films on Si for solar cells applications”, Solar Energy Materials

[21] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50 (2005) 293−340.

[22] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W.

F. Hsieh, “Effects of doping concentration and annealing temperature on properties of highly-oriented Al−doped ZnO films”, Journal of Crystal Growth, 287 (2006) 78−84.

[23] P. Uthirakumar and C. H. Hong, “Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles”, Materials Characterization (2009).

[24] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338−344.

[25] A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, and J. R.

Durrant, “Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films”, Journal of Physical Chemistry B, 109 (2005) 12525−12533.

[26] A. Morandeira, G. Boschloo, A. Hagfeldt, and L. Hammarstrom,

“Coumarin 343−NiO films as nanostructured photocathodes in dye-sensitized solar cells: ultrafast electron transfer, effect of the I3

/I redox couple and mechanism of photocurrent generation”, Journal of Physical Chemistry C, 112 (2008) 9530−9537.

[27] F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S.

Ru1hle, and D. Cahen, “Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states”, Journal of Physical Chemistry B, 105 (2001) 6347−6352.

[28] J. Halme, “Dye−sensitized nanostructured and organic photovoltaic cells:

technical review and preliminary tests”, Helsinki University of Technology, (2002) 30.

[29] J. G. de Vries, B. J. R. Scholtens, I. Maes, M. Gratzel, S. Winkel, S.

Burnside, M. Wolf, A. Hinsch, J. M. Kroon, M. Ahlse, F. Tjerneld, G.

Ferrero, E. Bruno, A. Hagfeldt, C. Bradbury, P. Carlsson, H. Pettersson, C.

M. Verspeek−Rip, and I. C. Enning, “Negative ames−test of cis−di(thiocyanato) −N, N'−bis(4,4'−dicarboxy−2,2'−bipyridine)Ru(II), the sensitizer dye of the nanocrystalline TiO2 solar cell”, Solar Energy Materials & Solar Cells, 60 (2000) 43−49.

[30] A. Hagfeldt and M. Gratzel, “Molecular photovoltaics”, Accounts of Chemical Research, 33 (2000) 269.

[31] M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, 44 (2005) 6841−6851.

[32] V. Thavasi, V. Renugopalakrishnan, R. Jose, and S. Ramakrishna,

“Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Materials Science and Engineering R, 63 (2009) 81−99.

[33] M. Späth, P. M. Sommeling, J. Wienke, J. A. M. van Roosmalen, and W.

C. Sinke, “Stability of sealed nanocrystalline organic photovoltaic devices”, Netherlands Energy Research Foundation ECN, 1 (1996) 1755.

[34]林明獻, “太陽能電池技術入門”, 第二章 (2007).

[35] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338.

[36] M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, “Comparison of dye−sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime”, Journal of Physical Chemistry C, 111 (2007) 1035.

[37] Dittrich, Th. Lebedev, and E. A. Weidmann, “Electron drift mobility in porous TiO2 (anatase)”, Physica Satus Solidi A, R5 (1998) 165.

[38] C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO”,

[39] C. Bauer, C. Boschloo, G. Mukhtar, and A. Hagfeldt, “Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO”, Journal of Physical Chemistry B, 105 (2001) 5508.

[40] T. P. Chou, Q. Zhang, and G. Cao, “Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye−sensitized solar cells”, Journal Physical Chemistry C, 111(50) (2007) 18804−18811.

[41] M. Adachi, J. Jiu, S. Isoda, Y. Mori, and F. Uchida, “Self−assembled nanoscale architecture of TiO2 and application for dye−sensitized solar cells”, Nanotechnology Science and Applications, 1 (2008) 1–7.

[42] E. Galoppinim, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G.

Boschloo, “Fast electron transport in metal organic vapor deposition grown dye−sensitized ZnO nanorod solar cells”, Physical Chemistry B, 110 (2006) 16159−16161.

[43] N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 1−51.

[44] L. Ding, Z. Yinmin, and W. Yuren, “From hexagonally arrayed nanorods to ordered porous film through controlling the morphology of ZnO crystals”, Applied Surface Science, 254 (2008) 5849−5853.

[45] J. Elias, R. Tena−Zaera, and C. Levy−Clement, “Electrochemical deposition of ZnO nanowire arrays with tailored dimensons”, Journal of Electroanalytical Chemistry, 621 (2008) 171−177.

[46] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien,

“Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, Journal of Materials Chemistry, 14 (2004) 2575−2591.

[47] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, Journal of Materials Chemistry, 12 (2002) 3773−3778.

[48] Y. Kokubun, H. Kimura, and S. Nakagomi, “Preparation of ZnO thin films on sapphire substrates by sol−gel method”, Japanese Journal of Applied Physics, 42 (2003) 904−906.

[49] G. Hodes, “Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition”, Physical Chemistry Chemical Physics, 9 (2007) 2181−2196.

[50] 陳慧英、黃定加、朱秦億 “溶膠凝膠法在製備膜薄上之應用” 化工技 術, 7 (11) (1999) 152−166.

[51] J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods”, Journal of Physical Chemistry C, 111(2) (2007) 596−600.

[52] G. Cao, “Nanostructures and nanomaterials: synthesis, properties, and application”, Imperial College Press, 1 (2004) 111.

[53] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203 (1999) 186−196.

[54] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, “Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine”, Journal of Sol−Gel Science Technology, 39 (2006) 49–56.

[55] J. M. Jang, S. D. Kim, H. M. Choi., J. Y. Kim, and W.G. Jung,

“Morphology change of self−assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process”, Materials Chemistry and Physics, 113 (2009) 389−394.

[56] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor−Angwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures”, Thin Solid Films, 515 (2007) 8679−8683.

[57] H. Gao, G. Fang, M. Wang, N. Liu, L. Yuan, C. Li, L. Ai, J. Zhang, C.

Zhou, S. Wu, and X. Zhao, “The effect of growth conditions on the

[58] Z. Chen and L. Gao, “A facile route to ZnO nanorod arrays using wet chemical method”, Journal of Crystal Growth, 293 (2006) 522−527.

[59] M. Wang, C. H. Ye, Y. Zhang, H. X. Wang, X. Y. Zeng, and L. D. Zhang,

“Seed−layer controlled synthesis of well−aligned ZnO nanowires arrays via a low temperature aqueous solution method”, Journal of Materials Science: Mater Electron, 19 (2008) 211−216.

[60] M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye−sensitized solar cells”, Nature Materials, 4 (2005) 455−459.

[61] J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, Nanotechnology, 17 (2006) S304−S312.

[62] M. S. Akhtar, M. A. Khan, M. S. Jeon, and O. B. Yang, “Controlled synthesis of various ZnO nanostructured materials by capping agents−assisted hydrothermal method for dye−sensitized solar cells”, Electrochimica Acta, 53 (2008) 7869−7874.

[63] R. S. Mane, W. J. Lee, C. D. Lokhande, B. W. Cho, and S. H. Han,

“Controlled repeated chemical growth of ZnO films for dye−sensitized solar cells”, Current Applied Physics, 8 (2008) 549−553.

[64] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, Journal Material Chemistry, 12 (2002) 3773–3778.

[65] S. O'Brien, L. H. K. Koh, and G. M. Crean, “ZnO thin films prepared by a single step sol–gel process”, Thin Solid Films, 516 ( 2008) 1391–1395.

[66] J. Song and S. Lim, “Effect of seed layer on the growth of ZnO nanorods”, The Journal of Physical Chemistry C, 111 (2007) 596–600.

[67] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Advanced Materials, 15 (2003) 15.

[68] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor−Angwafor, D. J. Riley, and Y. Sun, “The kinetics of the hydrothermal growth of ZnO nanostructures”, Thin Solid Films, 515 (2007) 8679–8683.

[69] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of sol–gel AZO thin films”, Current Applied Physics, 9 (2009) 683–687.

[70] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of sol−gel AZO thin films”, Current Applied Physics, 9 (2009) 683−687.

[71] R. Zhang, J. Pan, E. P. Briggs, M. Thrash, and L. L. Kerr, “Studies on the adsorption of RuN3 dye on sheet-like nanostructured porous ZnO films”, Solar Energy Materials & Solar Cells, 92 (2008) 425–431.

[72] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, and H. Siegbahn, “Nanostructured ZnO electrodes for dye−sensitized solar cell applications”, Journal of Photochemistry A: Chemistry, 148 (2002) 57−64.

相關文件