• 沒有找到結果。

一、 在低氧與常氧環境下進行阻力運動,RPE 確實能夠反應阻力運動之 強度,即 RPE 的使用能有效評估常氧與低氧環境下阻力運動的強 度。

二、 不論低氧或常氧環境下進行仰臥推舉運動,心跳率確實有較高的反 應,血乳酸也會隨著運動強度的增加而上升。然而,蹲舉運動心跳 率會隨強度增加而上升,卻在低氧環境下無顯著較高的變化,可能 原因是蹲舉運動參與的肌群較多,主動肌群也較大。因此,本實驗 設定低氧環境的氧濃度及適應低氧環境的時間,不足以刺激生理反 應所致。

三、 當低氧或常氧環境下需要 RPE 來監控或評估阻力運動強度,不論 使用局部 RPE 或是全身 RPE,皆能準確反映阻力運動的強度。

四、 阻力運動屬於短時間無氧運動,本實驗設定為一組的阻力運動,未 來研究建議,可探討多組的阻力運動,也可嘗試將低氧環境之氧濃 度降低,做進一步的研究,將能更清楚了解在低氧環境下進行阻力 運動對 RPE 的影響。

引用文獻

王順正(1999)。運動強度的判定(自覺量表)。取自國立中正大學,運動科學教育研 究室網址 http://epsport.ccu.edu.tw/epsport/week/show.asp?repno=18

豐東洋(2004)。高地訓練對無氧運動能力影響之探討。中華體育季刊,18(2),129-134。

Armstrong, L. E. (2000). Performing in extreme environments. Champaign, IL: Human Kinetics.

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports, 14(5), 377-381.

Bailey, D. M., & Davies, B. (1997). Physiological implications of altitude training for endurance performance at sea level: a review. British Journal of Sports Medicine, 31(3), 183-190.

Bailey, D. M. Davies, B., Romer, L., Castell, L., Newsholme, E., & Gandy, G. (1998).

Implications of moderate altitude training for sea-level endurance in elite distance runners. European Journal of Applied Physiology, 78(4), 360-368.

Borg, G. (1990).Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work Environment Health. 16(1),

55-58.

Day, M. L., McGuigan, M. R., Brice, G., & Foster, C. (2004). Monitoring exercise intensity during resistance training using the session RPE scale. The Journal of Strength and Conditioning Research, 18(2), 353-358.

Daniels, J., & Oldridge, N. (1970). The effect of alternate exposure to altitude and sea level On world-class middle-distance runners. Medicine & Science in Sports, 2, 107-112.

Demello, J. J., Cureton, K.J., Boineau, R. E., & Singh, M. M. (1987). Ratings of perceived exertion at the lactate threshold in trained and untrained men and women. Medicine & Science in Sports, 19(4), 354-362.

Duncan, M., Al-Nakeeb, Y., & Scurr, J. (2006). Perceived exertion is related to muscle activity during leg extension exercise. Research in Sports Medicine, 14(3), 179-189.

Eston, R. G., & Williams, J. G. (1988). Reliability of ratings of perceived effort regulation of exercise intensity. British Journal of Sports Medicine, 22(4), 153-155.

Ekblom, B., & Golobarg, A. N. (1971). The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiologica Scandinavica, 83(3), 399-406.

Friedmann, B., Kinscherf, R., Borisch, S., Richter, G., Bortsch, P., & Billeter, R. (2003).

Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflugers Archiv European Journal of Physiology, 446(6), 742-751.

Ferretti, G. Hauser , H & Di-Prampero, P. E. (1990). Maximal muscular power before and after exposure to chronic hypoxia. International Journal of Sports Medicine,11(1), 31-34.

Gore, C. J., Hahn, A. G., Aughey, R. J., Martin, D. T., Ashenden, M. J., & Clark, S. A.

(2001). Live high: train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiologica Scandinavica, 173(3), 275-286.

Green, J. M. Pritchett, R. C., Crews, T. R., Tucker, D. C., McLester, J. R., & Wickwirem P.

J.(2007). RPE drift during cycling in 18 degrees C vs 30 degrees C wet bulb globe temperature. Journal of Sports Medicine and Physical Fitness, 47(1), 18-24.

Gearhart, R. F. Gearhart, R. F., Goss, F. L., Lagally, K. M., Jakicic, J. M., Gallagher, J., Gallagher, K. I., Robertson, R. J. et al. (2002). Ratings of perceived exertion in active muscle during high-intensity and low-intensity resistance exercise. Journal of

Strength and Conditioning Research, 16(1), 87-91.

Grover, R. F., Weil, R. F. & Reeves, J. T. (1986). Cardiovascular adaptation to exercise at high altitude. Exercise and Sport Sciences Reviews, 14(1), 269-302.

Katsanos, C. S., & Moffatt, R. J. (2005). Reliability of heart rate responses at given ratings of perceived exertion in cycling and walking. Research Quarterly for Exercise and Sport, 76(4), 433-439.

Kon, M., Ikeda, T., Homma, T., Akimoto, T., Suzuki, Y., Kawahara, T. (2009). Effects of acute hypoxia on metabolic and hormonal responses to resistance exercise. Medicine & Science in Sports & Exercise, 42(7), 1279-1285.

Lagally, K. M., Robertson, R. J., Gallagher, K. I., Gearhart, R., & Goss, F. L.(2002).

Ratings of perceived exertion during low-and high-intensity resistance exercise by young adults. Perceptual and Motor Skills, 94(3), 723-731.

Lagally, K. M., Robertson, R.J., Gallagher, K.I., Goss, F. L., Jakicic, J. M., Lephart, S.M., McCaw, S. T., Goodpaster, B.et al. (2002). Perceived exertion,

electromyography, and blood lactate during acute bouts of resistance exercise.

Medicine & Science in Sports and Exercise, 34(3), 552-559.

Lagally, K. M., & Amorose, A. J. (2007). The validity of using prior ratings ratings of perceived exertion to regulate resistance exercise intensity. Perceptual & Motor Skills, 104(2), 534-542.

Linossier, M. T., Dormois, D., Arsac, L., Denis, C., Gay, J. P., & Geyssant, A. (2000).

Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiologica Scandinavica, 168(3), 403-411.

Maw, G.J., Boutcher, S.H., & Taylor, N.A. (1993). Ratings of perceived exertion and affect in hot and cool environments. European Journal of Applied Physiology and

Occupational Physiology. 67(2), 174-179.

Marinov, B., Kostianev, S., & Turnovska, T. (2002).Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized exercise .Clinicl Physiology Functional Imaging. 22(4), 254-260.

Mahon, A. D, & Ray, M. L. (1995).Ratings of perceived exertion at maximal exercise in children performing different graded exercise test. Journal of Sports Medicine and Physical Fitness, 35(1), 38-42.

Morgan, W. P. (1973). Psychological factors influencing perceived exertion. Medicine &

Science in Sports, 5(2), 97-103.

Noble, B. J., Borg, G. A., Jacobs, I., Ceci, R., & Kaiser, P. (1983). A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate.

Medicine & Science in Sports, 15(6), 523-528.

Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., & Uchida, A.(2010).Hypoxia increases muscle hypertrophy induced by resistance training. International Journal of Sports Physlology and Performance. 5(4), 497-508.

Nummela, A., Jouste, P., & Rusko, H. (1996). Effect of living high and training low on sea level anaerobic performance in runners. Medicine & Science in Sports & Exercise, 28, 124.

Nummela, A. & Ruskp, H. (2000). Acclimatization to altitude and normoxic training improve 400-m running performance at sea level. Journal of Sports Sciences, 18(6), 411-419.

Robertson, R. J., Moyna, N.M., Sward, K.L., Millich, N.B., Goss, F.L., & Thompson, P. D.

(2000). Gender comparison of RPE at absolute and relative physiological criteria.

Medicine & Science in Sports & Exercise, 32(12), 2120-2129.

Robertson, R. J., Gillespie, R.L, McCarthy J, & Rose, K, D. (1979). Differentiated

perceptions of exertion: part I. mode of integration of regional signals. Perceptual and Motor Skills, 49(3), 683-689.

Wilber, R. L. (2001). Current trends in altitude training. Sports Medicine, 31(4), 249-265.

Wilber, R. L. (2004). Altitude training and athletic performance. Champaign, IL: Human Kinetics.

Woorons, X., Mollard, P., Lamberto, C., Letournel, M., & Richalet, J. P. (2005). Effect of acute hypoxia on maximal exercise in trained and sedentary women. Medicine &

Science in Sports & Exercise, 37(1), 147-154.

Stray-Gundersen, J. Chapman, R. F., & Levine, B. D. (2001). “Living‎high-training‎low”‎

altitude training improves sea level performance in male and female elite runners.

Journal of Applied Physiology, 91(3), 1113-1120.

Shephard, R. J., Vandewalle, H., Gil, V., Bouhlel, E., & Monod, H. (1992). Respiratory, muscular, and overall perceptions of effort: The influence of hypoxia and muscle mass.

Medicine & Science in Sports & Exercise, 24(5), 556-567.

Suminski, R. R. (1997). Perception of effort during resistance exercise. Journal of Strength and Conditioning Research, 11(4), 261-265.

附錄

姓名:________________ 年齡:_________________ 性別:____________

緊急聯絡人:____________ 電話:_________________

二、您認為現在的身體狀況如何(請在適合之□內打)

四、運動經驗

1.你從事的運動項目:(可複選)

 游泳  體操  爬山  快走  舉重  慢跑  阻力運動

 太極拳  腳踏車  球類運動  郊遊  跳舞  其他

2.平均每周運動幾天?  1天  2天  3天  4天  5天 3.每周運動時間約多久?  20分鐘以下  20-40分鐘  40-60分鐘  60分鐘以上 4.已持續多久? ______年

5.曾是運動代表員嗎?  是  否

6.運動代表員的層級? 甲  乙  其他

7.當運動代表員的時間多長?  五年以上  3-5年  1-2年

謝謝您的合作!

簽名____________

日期____________

附錄二 參與者知情同意書

參與者知情同意書

計劃名稱 :急性低氧暴露對阻力運動中自覺努力程度和生理反應之影響 執行單位 :國立臺灣師範大學運動科學研究所

計畫主持人:何仁育 職稱:助理教授

計畫聯絡人:陳瑩甄 聯絡電話: 0910-311205

※24 小時緊急聯絡人 何仁育電話:0988-087150

參與者姓名: 性別:

出生日期: 年齡:

參與者編號: 電話:

通訊地址:

緊急聯絡人姓名/與參與者關係:

電 話:

通訊地址:

壹、前言:

(一)熟悉期

 常壓低氧儀器(Colorado Altitude Training , Boulder, CO, USA)

 大氣壓為760 mmHg、15.0% 含氧量、約2500 m海拔 伍、阻力運動測試

常氧及低氧環境下,依平衡次序進行低強度(30% of 1RM,12 reps)、中強度(60%

of 1RM,6 reps)、高強度(90% of 1RM,4 reps)之蹲舉(back squat)與仰臥推舉(bench press)兩種阻力運動測試(1 set ,每組休息3-5min)(蹲舉與仰臥推舉動作,間隔至少休 息20分鐘)(常氧和低氧環境測驗,間隔休息1週)。

每次不同強度之運動結束後,

記錄:自覺努力程度(RPE)(CR-10)、血乳酸(指尖採血)、心跳率、血壓、血含氧

血乳酸:本實驗採用血乳酸分析儀(Lactate‎pro™ KDK Corporation Japan),參與者 在測驗前,每次低強度、中強度、高強度阻力運動後,酒精消毒指尖,以食指之

本試驗計畫也將藉由足夠的熱身活動、訓練員的個別指導、蹲舉動作執行的正確

附錄三 Borg (CR-10)

The Borg Category Ratio Scale (CR – 10)

0

沒有感覺 ( nothing at all ) 0.5 非常非常弱 (very, very weak) 1 非常弱(very weak)

2 弱(weak)

3 適度(moderate)

4 有些強 (somewhat strong) 5 強 (strong)

6

7 非常強 (very strong) 8

9

10 非常非常強 (very, very strong) 最大 (maximal)

個人小傳 姓名:陳瑩甄

出生日期:77 年 2 月 5 日

出生地:臺灣省彰化市

學歷:國立台灣師範大學 運動科學所(99 年 8 月~ )

國立新竹教育大學 體育系(99 年 6 月~)

經歷: 臺北市幼稚園幼兒健康體適能教師研習 術科授課助教

全國中學校運動會 運動志工 國立臺灣師範大學 體適能指導員 新竹市活力健康會館 游泳教練

專長:游泳教學、體適能指導

證照:中華民國水上救生協會 救生員 中華民國游泳協會 C 級游泳教練證 中華民國游泳協會 C 級游泳裁判證 台灣運動傷害防護學會 運動急救證

相關文件