• 沒有找到結果。

在本論文中,我們已經成功架設出 SD-OCT 三維掃描系統,並利用 moment 演算 法去量化光譜變化,對各種仿體、生物樣品進行實測與分析,在整個研究中歸納 出幾項結論。

1. 在實測的系統空間解析度,軸向解析度為 2.59μm,橫向解析度部分高倍物鏡 為6.2μm、低倍物鏡為 8.7μm。軸向解析度距離理論值 1.6μm 還相差約 1μm,

可能是因為參考端與樣品端的色散還不能完全匹配,希望之後在色散補償片的 設計作修改以達到接近理論值的軸向解析度。

2. 我們架設出以 SD-OCT 為基礎的超高速度、超高解析度三維斷層影像掃描系 統,並實際運用於活體皮膚組織,我們從掃描血管瘤可以清楚看到血管瘤的型 態、大小,痣區部分可以看到痣的分佈、浸潤深度,甲壁微血管也可以明顯發 現血管的分佈型態等,未來希望可以提高系統的運算速度以達到更快的成像速 度。

3. 在光譜仿體測試可以發現不同樣品的光譜特性,並利用 moment 演算法分析 1 筆載體空白實驗與 3 筆不同吸光特性的仿體並從量化光譜變化與理論相同,在 未來希望可以再做多次的仿體測試以驗證實驗重複性及系統穩定性。

4. 在 moment 演算法運用於高散射樣品,可以清楚看到經過不同吸光物質偏態色 階的變化。但從實驗數據看到單筆各區塊(如皮膚上方,血管瘤下方等)的偏態 值重疊區塊很大,所以我們在色階設定必須二值化才能清楚分辨而且在豬皮樣 品上也出現少許偏態的變化,其原因有可能是 moment 演算法對於高散射樣品 的靈敏度不夠導致無法分出更細微的光譜變化,如何減少散射光譜對於 moment 演算法的影響是我們將來需要積極解決的問題。

70

參考文獻

[1] 衛生署國民健康局

(http://www.bhp.doh.gov.tw/BHPNet/Web/News/News.aspx?No=201206210001)

[2] D. Gutierrez-Mendoza, R. Narro-Llorente, M. Karam-Orantes, V. Fonte-Avalos, E.

Martinez-Luna, S. Toussaint-Caire and J. Domiguez-Cherit, "Dermoscopy Clues in Pigmented Bowen's Disease," Dermatology research and practice, 62(4), 597-604 (2010)

[3] R. P. Braun, M. Oliviero, I. Kolm, L. E. French, A. A. Marghoob and H. Rabinovitz,

"Dermoscopy: what's new?," Clinics in dermatology, 27(1), 26-34 (2009)

[4] P. Sbano, N. Nami, L. Grimaldi and P. Rubegni, "True amelanotic melanoma: the great masquerader," Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 63(3), e307-308 (2010)

[5] Y. Pan, A. J. Chamberlain, M. Bailey, A. H. Chong, M. Haskett and J. W. Kelly,

"Dermatoscopy aids in the diagnosis of the solitary red scaly patch or plaque-features distinguishing superficial basal cell carcinoma, intraepidermal carcinoma, and psoriasis,"

J Am Acad Dermatol, 59(2), 268-274 (2008)

[6] R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf and J. H. Saurat, "Dermoscopy of pigmented skin lesions," J Am Acad Dermatol, 52(1), 109-121 (2005)

[7] G. Pellacani, A. M. Cesinaro and S. Seidenar, "In vivo assessment of melanocytic nests in nevi and melanomas by reflectance confocal microscopy," Modern Pathology, 18(4), 469-474 (2005)

[8] P. Guitera, S. W. Menzies, C. Longo, A. M. Cesinaro, R. A. Scolyer and G. Pellacani,

"In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases," The Journal

of investigative dermatology, 132(10), 2386-2394 (2012)

71

[9] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R.

Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical Coherence Tomography," Science, 254(5035), 1178-1181 (1991)

[10] J. Welzel, E. Lankenau, R. Birngruber and R. Engelhardt, "Optical coherence tomography of the human skin," J Am Acad Dermatol, 37(6), 958-963 (1997)

[11] J. Weissman, T. Hancewicz and P. Kaplan, "Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis," Optical Society

of America, 12(23), 5760-5769 (2004)

[12] J. Lademann, A. Knüttel, H. Richter, N. Otberg, R. v. Pelchrzim, H. Audring, H.

Meffert, W. Sterry and K. Hoffmann, "Application of Optical Coherent Tomography for Skin Diagnostics," Laser Physics, 15(2), 288–294 (2005)

[13] J. Welzel, M. Bruhns and H. H. Wolff, "Optical coherence tomography in contact dermatitis and psoriasis," Archives of dermatological research, 295(2), 50-55 (2003) [14] Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. d. Boer and J. S. Nelson, "Doppler

standard deviation imaging for clinical monitoring of in vivo human skin blood flow,"

Optics Letters, 25(18), 1358-1360 (2000)

[15] M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense and J. F. de Boer, "Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography," Burns, 30(6), 511-517 (2004)

[16] U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen and J. G.

Fujimoto, "Spectroscopic optical coherence tomography," Optics letters, 25(2), 111-113 (2000)

[17] J. U. Kang and X. Liu, “High Resolution Hemoglobin Oxygen Saturation Level Imaging Using Morlet Wavelet Transformed Spectroscopic Optical Coherence Tomography,” In Proceedings of ISBI, 1431-1434 (2010)

[18] A. L. Oldenburg, Chenyang Xu and S. A. Boppart, "Spectroscopic Optical Coherence

72

Tomography and Microscopy," IEEE Journal of Selected Topics in Quantum

Electronics, 13(6), 1629-1640 (2007)

[19] A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, "Optical coherence tomography—principles and applications," REPORTS ON PROGRESS IN PHYSICS, 66,239–303 (2003)

[20] blood

(http://en.wikipedia.org/wiki/Blood) [21] 光學空間解析力定義

(http://www.kshitij-school.com/Study-Material/Class-12/Physics/Diffraction-and-polariz

ation/Resolution-of-single-slit-and-circular-apertures.aspx)

[22] 帶氧血紅素與去氧血紅素的莫耳消光係數 (http://omlc.ogi.edu/spectra/index.html)

相關文件