• 沒有找到結果。

潛變的特性,所以隨著負載加大、時間增長會導致應力開裂的情 形,因此材料表面會有破損現象的產生。

3. 持壓時間的長短對於熱壓印材料也有顯著的影響,當溫度較低且 持壓時間過短時,容易造成試片表面壓印不完整,所以表面很明 顯的可以看出干涉條紋分布不均勻的現象。當溫度較高且持壓時 間過長時,容易使材料因為長時間高溫環境下,造成材料試片表 面開始產生小氣泡與軟化變形的現象,因此溫度較低時需使用較 長的壓印時間,溫度較高時持壓時間應該縮短,如此才能得到較 好的壓印結果。

4. U 型溝槽試片所培養的細胞在貼附的階段就有規律性的貼附排列 現象產生,接著分化階段,細胞並不會像正常肌肉細胞一樣如樹 枝狀的分化,而是同方向性的分化,到後期細胞成形階段,細胞 一樣順著溝槽方向排列生長。而培養於V 型溝槽試片的細胞卻沒 有同方向貼附排列的現象,其生長情況和一般正常的成肌細胞相 似。這主要是因為U 型溝槽的深度較深,所以深寬比大,因此能 有效的誘導細胞做同方向性的貼附排列,另一原因在於轉印後的 材料試片,由於V 型溝槽試片其溝槽凸起寬度變得十分細窄,因 此沒有足夠的空間能讓細胞的觸角去碰觸與移動,導致不能有效 的誘導細胞成同方向性的生長排列。

5. 利用電漿表面改質來改變材料表面的親水性,由實驗觀察可知,

經過氬電漿處理過後的U 型溝槽試片細胞貼附效果比較好,且細 胞有同方向性排列的現象,但是經由氧電漿處理過後的試片,細 胞已經沒有同方向性排列的現象,此原因在於氬氣為惰性氣體,

能避免材料表面容易與外界起化學反應,進而破壞材料表面微結 構,影響細胞貼附與排列的行為。另外,PMMA 材料經電漿改質

增加表面親水性,其貼附效果並沒有培養皿底盤的PS 材料來的穩 定,由此可知,PMMA 材料經電漿表面改質後,其表面親水性似 乎對於細胞貼附的效果並沒有很太大的改善。

第六章 參考文獻

01. S.Y. Chou, Peter R. krauss, Preston J. Rrnstrom, Appl. Phys.Lett., 1995; 67(21): pp.3114-3116.

02. S.Y. Chou, Peter R. krauss, Preston J. Rrnstrom, “Nanoimprint lithography.”, J. Vac. Sci. Technol., 1996; 14(6): pp.4129-4133.

03. 陳釧鋒,“奈米轉印製程與設備技術發展現況介紹”,奈米機械技 術專輯,2004,機械工業雜誌255期,pp.151-162。

04. 陳守仁、巫振華、何侑倫、王維漢、陳來勝,“奈米轉印技術發 展現況”,奈米機械技術專輯,2005,機械工業雜誌267期,

pp.36-46。

05. 吳兆棋、何侑倫、陳守仁、陳來勝,“奈米轉印國際發展現況”,

奈米機械技術專輯,2006,機械工業雜誌279期,pp.29-42。

06. H.C. Scheer, H. Schulz, T. Hoffmann, C.M. Sotomayor Torres,

“Problems of the nanoimprinting technique for nanometer scale pattern definition.”, J. Vac. Sci. Technol. B, 1998; 16: pp.3917-3921.

07. 林家弘、許嘉峻,“奈米製造技術的新契機-奈米轉印微影術及 其設備發展現況”,奈米機械技術專輯,2003,機械工業雜誌243 期,pp.130-141。

08. HTW. ZhangTH and HTS.Y. ChouTH,“Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers.”, Appl. Phys. Lett, 2001;

79: pp.845-847.

09. Y.J. Lee, C.H. Streuli, “Extracellular matrix selectively modulates the response of mammary epithelial cells to different soluble signaling ligands.”, J BioChem, 1999; 274: pp.22401-22408.

10. 楊志明,“組織工程”,化學工業出版社,北京,2002,pp.215。

11. W.M. Becker, L.J. Kleinsmith, “The World of the Cell”, 4nd., 1999.

12. 姚康德、尹玉姬,“組織工程相關生物材料”,化學工業出版社,

北京,2003,pp.2。

13. G. Karp, “Cell and molecular biology”, 3rd., 2002; pp.252-255.

14. K.C. Dee, D.A. Puleo, R. Bizios., “An Introduction to Tissue-Biomaterial Interactions”, 2002.

15. R.O. Hynes, “Integrins: versatility, modulation, and signaling in cell adhesion.”, Cell, 1992; 69: pp.11-25.

16. http://www.mun.ca/biology/desmid/brian/BIOL2060/CellBiol11/

17. K. Vuori, “Integrin Signaling: Tyrosine Phosphorylation Events in Focal Adhesions”, Membrane Biology, 1998; 165: pp.191-199.

18. P. Liang and T.H. MacRae, “Molecular chaperones and the cytoskeleton.”, J. Cell Sci, 1997; 110: pp.1431-1440.

19. T.H. MacRae and C.M. Langdon, “Tubulin synthesis,structure, and function: what are the relationships?”, Biochim.Cell Biol, 1989; 67:

pp.770-790.

20. R.A. Coss, M.E. Alden, P.R. Wachsberger and N.N. Smith,

“Response of the microtubular cytoskeleton following hyperthermia as a prognostic indicator of survival of Chinese hamster ovary cells.”, J. Radiat. Oncol. Biol. Phys, 1996; 34: pp.403-410.

21. J.E Hesketh and I.F. Pryme, “Cytoskeleton in Specialised Tissues and in Pathological States.”, 1996; 03: PP.526.

22. http://biop.ox.ac.uk/www/lj2001/noble/noble_01.html

23. I. Buno, A. Juarranz, M. Canete, A. Villanueva, J. Gosalvez and

J.C. Stockert, “Image processing and analysis of fluorescent labeled cytoskeleton.”, Micron, 1998; 29: PP.445-449.

24. H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P.

Scott, S.L. Zipursky, and J. Darnell, “Molecular cell biology.”, W.F. Freeman, New York, 2003.

25. J. Iida, T.J. Itoh, H. Hotani, K. Nishiyama, H. Murofushi, J.C.

Bulinski, and S. Hisanaga, “The projection domain of MAP4 suppresses the microtubule-bundling activity of the microtubule- binding domain.”, J. Mol. Biol, 2002; 320: pp.97-106.

26. http://micro.magnet.fsu.edu/cells/microfilaments/microfilaments.html 27. W.H. Wang, Lalantha R. Abeydeera, Randall S. Prather, and Billy N.

Day., “Polymerzatio of nonfilamentous actin into microfilaments is an important process for porcine oocyte maturation and early embryo development.”, Biol. Reprod, 2000; 62: pp.1177-1183.

28. P.A. Coulombe, L. Ma, S. Yamada, and M. Wawersik, “Intermediate filaments at a glance.”, J. Cell Sci, 2001; 114: pp.4345-4347.

29. K. Tokuraku, M. Katsuki, T. Matui, T. Kuroya, and S. Kotani, “

Microtubule-binding property of microtubule-associated protein 2 differs from that of microtubule-associated protein 4 and tau.”, Eur. J.

Biochem, 1999; 264: pp.996-1001.

30. F. Mayer, “Cytoskeletons in prokaryotes.”, Cell Biol. Int, 2003; 27:

pp.429-438.

31. http://www.hengsys.net/index.php 32. http://www.cella.cn/book/09/03.htm

33. L.W. Jennifer, and Jeffry A. Hubbell, “Synthetic Biodegradable Polymer Scaffolds.”, Birkhauser, 1997; ch.5: pp.86.

34. Y.T. Yeh, “Participation of Eps8 in v-Src mediated cell motility.”, 2004.

35. D. Bray, “Cell Movements”, Garland Publishing, NY, 1992; pp.236- 270.

36. H. Lodish, D. Baltimore, A. Berk, S.L. Zipursky, P. Matsudaira, and J.

Darnell, “Molecular Cell Biology”, W. H. Freeman & Co, NY, 1995;

pp.24-121.

37. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber,

“Geometric control of cell life and death.”, Science, 1997; 276:

pp.1425-1428.

38. R.A. Klinghoffer, C. Sachsenmaier, J.A. Cooper, P. Soriano, “Src family kinases are required for integrin but not PDGFR signal transduction.”, EMBO J, 1999; 18: pp.2459-2471.

39. V.J. Fincham and M.C. Frame, “The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the

turnover of these structures during cell motility.”, EMBO J, 1998; 17:

pp.81-92.

40. S.J. Lee, J.S. Choi, K.S. Park, G. Khang, Y.M. Lee, H.B. Leea,

“Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.”, Biomaterials, 2004; 25: pp.4699-4707.

41. J. Meyle, H. Wolburg, A.F. Von Recum, “Surface Micromorphology and cellular interactions.”, J Biomater Appl, 1993; 7: pp.362-374.

42. L. Scheideler, J. Geis-Gerstorfer, D. Kern, F. Pfeiffer, F. Rupp, H.

Weber, H. Wolburg, “Investigation of cell reactions to microstructured implant surfaces.”, Materials Science and Engineering C, 2003; 23: pp.455–459.

43. R.G. Harrison, “The cultivation of tissues in extraneous media as a method of morphogenetic study.”, Anat Rec, 1912; 6: pp.181-193.

44. D.M. TBrunette, G.S. Kenner and T.R. Gould, “TGrooved titanium surfaces orient growth and migration of cells from human gingival explants.”, J. Dent, 1983; 62: pp.1045-1048.

45. P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow and C.D.W.

Wilkinson, “Cell guidance by ultrafine topography in vitro.”, Journal of Cell Science, 1991; 99: pp.73-77.

46. B.W. Stothard, A. Curtis, W. Monaghan, K. Macdonald, C.

Wilkinson, “Guidance and activation of murine macrophages by nanometric scale topography.”, Experimental Cell Research, 1996;

223: pp.426–435.

47. S. Lenhert, M.B. Meier, U. Meyer, L. Chi, H.P. Wiesmann,

“Osteoblast alignment, elongation and migration on grooved

polystyrene surfaces patterned by Langmuir-Blodgett lithography.”, Biomaterials, 2005; 26: pp.563-570.

48. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, “Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.”, Biomaterials, 2005; 26: pp.2603-2610.

49. B. Zhu, Q. Zhang, Q. Lu, Y. Xu, J. Yin, J. Hu, Z. Wang,

“Nanotopographical guidance of C6 glioma cell alignment and oriented growth.”,Biomaterials, 2005; 25: pp.4215-4223.

50. D.C. Popescu, R. Lems, N.A.A. Rossi, C.T. Yeoh, J. Loos, S.J.

Holder, C.V.C. Bouten, and N.A.J.M. Scommerdijk, “The patterning and alignment of muscle cells using the selective adhesion of

poly(oligoethylene glycol methyl ether methacrylate)-based ABA black copolymers.”, Advance Materials, 2005; 17: pp.2324-2329.

51. F. Pfeiffer, B. Herzog, D. Kern, L.Scheideler, J. Geis-Gerstorferc, H. Wolburga, “Cell reactions to microstructured implant surfaces.”, Microelectronic Engineering, 2005; 67-68: pp.913-922.

52. A.I. Teixeiraa, G.A. McKieb, J.D. Foleyb, P.J. Bertics, P.F. Nealeya, C.J. Murphy, “The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate

topography.”,Biomaterials, 2006.

53. P.M. Brett, J. Harle, V. Salih, R. Mihoc, I. Olsen, F.H. Jones, M.

Tonetti, “Roughness response genes in osteoblasts.”, Bone, 2004; 35:

pp.124-133.

54. H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, K.K. Liao, F.L. Chen,

“Effect of surface roughness of ground titanium on initial cell adhesion.”, Biomolecular Engineering, 2004; 21: pp.93-97.

55. B.D. Boyan, V.L. Sylvia, Y. Liu, R. Sagun, D.L. Cochran, “Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2.”, Biomaterials, 1999; 20: pp.2305-2310.

56. A.F. Von Recum, C.E. Shannon, C.E. Cannon, K.J. Long, T.G. Van Kooten, J. Meyle, “Surface Roughness, Porosity, and Texture as Modifiers of Cellular Adhesion.”, Tiss Eng, 1996; 02: pp.241-253.

57. R. Lange, F. Lüthen, U. Beck, J. Rychly, A. Baumann, B. Nebe,

“Cell-extracellular matrix interaction and physico-chemical

characteristics of titanium surfaces depend on the roughness of the material.”, Biomolecular Engineering, 2002; 19: pp.255-261.

58. C. Wirth, V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N.

Jaffrezic-Renault, L. Ponsonnet, “Nitinol surface roughness

modulates in vitro cell response: A comparison between fibroblasts and osteoblasts.”, Material Science and Engineering C, 2005; 25:

pp.51-60.

59. F. Lüthen, R. Lange, P. Becker, J. Rychly, U. Beck, J.G.B. Nebe,

“The influence of surface roughness of titanium on β1-and

β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells.”, Biomaterial, 2005; 26: pp.2423-2440.

60. H.G. Craighead, S.W. Turner, R.C. Davis, C. James, A.M. Perez, P.M. St. John, M. Isaacson, W. Shain, J.N. Turner, G. Banker,

“Chemical and topographical surface modification for control of central nervous system cell adhesion.”, J. Biomed. Microdev,1998; 1:

pp.49–64.

61. A.M.P. Turner, N. Dowell, S.W.P. Turner, L. Kam, M. Isaacson, J.N.

Turner, H.G. Craighead, W. Shain, “Attachment of astroglial cells to microfabricated pillar arrays of different geometries.”, J. Biomed, 2000; 51: pp.430–441.

62. Y.A. Rovensky, A.D. Bershadsky, E.I. Givargizov, L.N. Obolenskaya, J.M. Vasiliev, “Spreading of mouse fibroblasts on the substrate with multiple spikes.”, Exp. Cell Res, 1991; 197: pp.107–112.

63. W.T. Su, I.M. Chu, J.Y. Yang, C.D. Lin, “The geometric pattern of a pillared substrate influences the cell-process distribution and shapes of fibroblasts.”, Micron, 2006.

64. O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J.

Jeanfils, P. Hardouin, D. Landolt, “Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography.”, Biomaterials, 2004; 25: pp.2695–2711.

65. Y. Wan, Y. Wang, Z. Liu, X. Qu, B. Han, J. Bei, S. Wang, “Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and

nano-scale topography structured poly(L-lactide).”, Biomaterials, 2005; 26: pp.4453-4459.

66. H. Sunami, E. Ito, M. Tanaka, S. Yamamoto, M. Shimomur, “Effect of honeycomb film on protein adsorption,cell adhesion and

proliferation.”, Physicochem. Eng. Aspects, 2005.

67. M. Tanaka, K. Nishikawa, H. Okubod, H. Kamachid, T. Kawai, M.

Matsushita, S. Todo, Masatsugu Shimomur, “Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film.”, Physicochem. Eng. Aspects, 2006.

68. Y. Fukuhiraa, E. Kitazonoa, T. Hayashia, H. Kanekoa, M. Tanakab, M. Shimomurac, Y. Sumia, “Biodegradable honeycomb-patterned film composed of poly(lactic acid) and

dioleoylphosphatidylethanolamine.”, Biomaterials, 2006; 27:

pp.1797-1802.

69. M.R. Prausnitz, “Microneedles for transdermal drug delivery.”, Advanced Drug Delivery Reviews, 2004; 56: pp.581-587.

70. P. Favia, E. Sardella, R. Gristina, R. d’Agostino, “Novel plasma processes for biomaterials: micro-scale patterning of biomedical polymers”, Surface and Coatings Technology, 2003; 169-170:

pp.707-711.

在文檔中 中 華 大 學 碩 士 論 文 (頁 89-99)

相關文件