• 沒有找到結果。

本實驗的主要目的,就是希望在逆流層析中找到新的動靜相系統 來分離蛋白質,利用含有水核的反微胞,可使蛋白質在兩相分佈,依 逆流層析中有機-水相的特殊分佈,靜相是帶電的反微胞有機相,動 相是pH 值和鹽類濃度的梯度變化,類似於 Ion exchange 的原理,藉 由改變蛋白質和靜相之間的電荷作用力而分離蛋白質混合物。

雖然我們實驗中的蛋白質總回收率尚無法達到100 %,但仍然可 以得到較高濃度和蛋白質相對濃度90 %以上的蛋白質,且反微胞靜 相製備相當容易而且價格低廉,只需少量的反微胞就可達到蛋白質製 備分離效果。

在本實驗中只調整了動相的組成,未來還可改變反微胞組成,添 加其他的萃取劑等,希望以此為基礎,嘗試從發酵液、細胞培養液等 生物樣品中分離蛋白質,提供一項新的蛋白質純化方式。

參考文獻

1. M. J. Pires, M. R. Aires-Barros, and J. M. S. Cabral, “Liquid-Liquid Extraction of Proteins with Reversed Micelles.” Biotechnol. Prog.

(1996), 12, 290-301

2. Kent E. Goklen and T. Alan Hatton, “Protein Extraction Using Reverse micelles.” Biotechnol. Prog. (1985), 1, 69-74

3. 翁基育, ”於逆流層析儀中以反微胞萃取及濃縮細胞色素分子”,

國立交通大學,碩士論文,民國93年7月。

4. Kotlarchyk, M. Huang, J. S., Chen, S.H., “Structure of AOT Reversed micelles Determined by Small-angle Neutron Scattering.” J. Phys.

Chem. (1985), 89, 4382-4386.

5. Luisi, P. L.; Magid, L. J., “Solubilization of Enzymes and Nucleic Acids in Hydrocarbon Micellar solutions.” Crit. Rev. Biochem.(1986), 20, 409-474.

6. Hatton, T. A. “In Surfactant-based processes,” New York, (1989), 33, 55-90.

7. P. Panditands, Basu., ”Removal of Ionic Dyes from Water by Solvent Extraction Using Reverse Micelles,” Environ. Sci. Technol. (2004), 38, 2435-2442

8. Leodidis, E. B., Hatton, T. A. “Amino Acids in AOT Reversed

Micelles. Determination of Interfacial Partition Coefficients Using the Phase-Transfer Method.” J. Phys. Chem.(1990), 94, 6400-6411.

9. Leodidis, E. B., Hatton, T. A. “Amino Acids in AOT Reversed

Micelles. The Hydrophobic Effect and Hydrogen Bonding as Driving

6411-6420.

10. Go¨klen, K. E., Hatton, T. A. “Liquid liquid Extraction of Low

Molecular Proteins by Selective Solubilization in Reversed Micelles.”

Sep. Sci. Technol. (1987), 22, 831-841.

11. Dekker, M. van’t Riet, K. Baltussen, J. W., A. Bijsterbosh, B.H.

Hilhorst, R.; Laane, C. ” In Proceedings of the 4th EuropeanCongress

on Biotechnology.” (1987), 2, 507-510.

12. Masahiro Goto, Yukihisa Hashimoto, Taka-aki Fujita, Tsutomu Ono, and Shintaro Furusaki,” Important Parameters Affecting Efficiency of Protein Refolding by Reversed Micelles.” Biotechnol. Prog. (2000), 16, 1079-1085

13. Wen-Yih Chen, Ya-Wen Lee, Shin-Chun Lin, and Ching-Wen Ho.”

Renaturation and Interaction of Ribonuclease A with AOT Surfactant in Reverse Micelles”. Biotechnol. Prog. (2002), 18, 1443-1446

14. Go¨klen, K. E., Hatton, T. A. “Protein extraction using reverse micelles.” Biotechnol. Prog. (1985), 1, 69-74.

15. Takumi Kinugasa a, Aki Kondo, “Effects of ion species in aqueous phase on protein extraction into reversed micellar solution,” Sep. Purif.

Technol ,(2003),31,251-259

16. Carlos Regalado, Juan A. Asenjo, D. Leo Pyle,” Protein extraction by reverse micelles: Studies on the recovery of horseradish peroxidase.”

Biotechnol Bioeng, (1994),44,674

17. Ziyi Hu and Erdogan Gulari. ”Protein Extraction Using the Sodium Bis(2-ethyIhexyI) Phosphate (NaDEHP)Reverse Micellar System.”

Biotechnol Bioeng, (1996), 50, 203-206.

Hatton, ”Design of Surfactants Suitable for Protein Extraction by Reversed Micelles.” Biotechnol Bioeng, (1997), 54, 1

19. Wolbert, R. B. G.; Hilhorst, R.; Voskuilen, G.; Nachtegaal, H.;Dekker, M.; van’t Riet, K.; Bijsterbosch, B. H. “Protein transferfrom an

aqueous phase into reversed micellessthe effect ofprotein size and charge distribution.” Eur. J. Biochem. (1989),184, 627-633.

20. Pires, M. J. Cabral, J. M. S. “Liquid-liquid extraction of a recombinant protein with a reverse micelle phase.” Biotechnol. Prog. (1993), 9, 647-650.

21. Hentsch, M.; Menoud, P.; Steiner, L.; Flaschel, E.; Renken,

A.”Optimization of the surfactant (AOT) concentration in a reverse micellar extraction process.” Biotechnol. Tech. (1992), 6, 359-364.

22. Castro, M. J. M.; Moura, J. J. G.; Cabral, J. M. S. In Advances in Gene

Technology: Protein Engineering and Protein Production; Oxford IRL

Press: Oxford, U.K., (1988); pp 136.

23. Ishikawa, H.; Noda, K.; Oka, T. “Kinetic Properties of Enzymes in AOT-Isooctane Reversed Micelles.” J. Ferment. Bioeng. (1990), 6, 381-385.

24. Dekker, M.; van’t Riet, K.; Baltussen, J. W. A.; Bijsterbosh, B.H.;

Hilhorst, R.; Laane, C. In Proceedings of the 4th EuropeanCongress

on Biotechnology; Neijssed, O. M., van der Meer, R. R., Luyben, K.Ch.

A. M., Eds.; Amsterdam, (1987); Vol. 2, pp 507-510.

25. Sung-Sik Lee,* Bong-Kuk Lee, Jin-Sung Choi, and Jong-Pal

Lee,”Effect of Alcohol Addition on Back-Extraction of BSA and 細胞 色素C Using AOT Reverse Micellar System.” Bull. Korean Chem. Soc.

(2001), 22, 897

26. Somnuk Jarudilokkul, Ludger H. Poppenborg, David C. “Stuckey Backward Extraction of Reverse Micellar Encapsulated Proteins Using a Counterionic Surfactant.” Biotechnol Bioeng, (1999), 62, 593-601 27. P. Foucault, “Countercurrent Chromatography.”, Anal.Chem.

(1991),63, 569-579.

28. Y. Ito, “Development of Countercurrent Chromatography.”, Anal.

Chem. (1984),(56), 534-551.

29. Y. Ito, N. B. Mandava, “Countercurrent Chromatography: Theory and

Practice.”, Marcel Dekker, Inc., New York, 1988.

30. W. D. Conway, “Countercurrent Chromatography: Apparatus Theory

and Applications.”, VCH Publishers, Inc., 1990.

31. Y. Ito, W. D. Conway, “High-Speed Countercurrent Chromatography”, John Wiley & Sons, Inc. 1996.

32. Y. Ito, G. T. Bramblett, R. Bhatnagar, M. Huberman, L. Leive, L. M.

Cullinane, And W. Groves, “Improves nonsynchronous flow-through coil planet centrifuge without rotating seals: Principle and application.”,

Sep. Sci. Tech. (1983), 18, No. 1, 33-48.

33. Y. Ito, and R. L. Bowman, “Horizontal flow-through coil planet centrifuge without rotating seals.”, Anal. Biochem. (1977), 82, 63-68.

34. Y. Ito, J. Sandlin, and W. G. Bowers, “High-speed preparative countercurrent chromatography with a coil planet centrifuge.”, J.

Chromatogr. (1982), 244, 247-258.

35. W. D. Conway, Y. Ito, “Resolution in Countercurrent hromatography”,

J. Liq. Chromatogr.(1985), 8 ,(12), 2198-2207.

reversed-phase high-performance liquid chromatography on polystyrene-divinylbenzene column for the rapid separation and

purification of acid-soluble nuclear proteins.” J. Chromatogr. A, (1997), 763, 65-70.

37. L. Konermann, F. I. Rosell, A. G. Mauk, and D. J. Douglas,

“Acid-Induced Denaturation of 肌紅蛋白 Studied by Time-Resolved Electrospray Ionization Mass Spectrometry” Biochemistry, (1997), 36, 6448-6454

表2-1 ( A )、界面活性劑依電荷分類 (Anionic surfactant)

脂肪酸鹽 ─COONa 脂肪酸鹽 ─COONa 磺酸鹽 ─SO3Na

磷脂鹽 ─OPO3Na

陽離子型界面活性劑 (Cationic surfactant)

N+ (Amphoteric surfactant)

R3N+─CH2COO

-非離子型界面活性劑 (Nonionic surfactant)

CH2-O-CH2-O-CH2-OH

表2-2 ( A )、親水、疏水基團的HLB參數

( B )、不同 HLB 值之界面活性劑應用範圍.

( A )

Hydrophilic Group number

Hydrophobic Group number

─SO4Na 38.7 ─CH─ 0.475

─COOK 21.1 ─CH2─ 0.475

─COONa 19.1 ─CH3 0.475

─SO3Na 11.0 =CH─ 0.475

─OH (sorbitan ring)

0.5

( B )

HLB range Applications 1~6 W/O 乳化劑

6~9 潤濕劑 (wetting agent) 8~18 O/W 乳化劑

13~15 洗滌劑 (Detergent) 15~18 加溶劑 (Solubilizer)

表2-3 ( A )、常用的疏水性的陰(陽)離子型界面活性劑 SDBS:sodium dodecylbenzene sulfonate

Name MW Type cmc

(ppm) hexadecyltrimethylammonium bromide 364.6 cationic 350

cetyl pyridinium chloride 358 cationic 525 sodium dodecylbenzene sulfonate 348.5 anionic 500 sodium 2-diethylhexyl sulfosuccinate 444 anionic 1110

Name Formula MW type λmax

Dye surfactant solvent KC

(mM-1)

表4-1、實驗二各收集管的蛋白質濃度

Tube Number 肌紅蛋白 (ppm) 細胞色素 C (ppm) 溶菌酶 (ppm)

1 0 0 0 2 0 0 0 3 186.0 0 0 4 55.8 0 0.2 5 6.3 6.3 0.2 6 1.3 9.0 0.2

7 1.3 25.4 1.8

8 1.6 40.6 1.6

9 3.4 51.0 1.5

10 3.4 38.8 2.6 11 0.4 26.1 2.3 12 4.9 22.3 1.7 13 28.3 3.6 26.0 14 10.1 15.9 12.3

15 0 3.9 25.2

16 0 1.2 19.5

17 0 0.4 10

表4-2、實驗二各收集管中的蛋白質蛋白質相對濃度 Collector Concentration

(ppm)

表4-4、實驗三各收集管的蛋白質濃度

Tube Nunber 肌紅蛋白 (ppm) 細胞色素C (ppm) 溶菌酶 (ppm)

1 0 0 0 2 25.8 0 0 3 194.2 7.1 4.9

4 50.1 19.5 5.3

5 6.7 20.7 0.2 6 3.0 23.5 0.2 7 4.6 48.5 3.4 8 2.3 59.8 0.2 9 3.0 44.0 0.2 10 2.3 16.4 1.2 11 2.3 14.5 0.2 12 3.6 11.4 1.1 13 9.1 17.9 3.0

14 7.8 12.4 11.8

15 6.9 8.8 34.3 16 3.8 3.9 91.3 17 4.1 2.2 50.9 18 0 0 38.7 19 0 0 19.2 20 0 0 7.1

表4-5、實驗三各收集管中的蛋白質相對濃度 Collector Concentration

(ppm)

圖2-1、界面活性劑分子

圖2-2、界面活性劑濃度和溶液的物理性質

親水端 親油端

圖2-3、微胞結構

( a )球形結構 ( b )雙層結構 ( c )柱狀結構 ( d )層狀結構

( a )微胞 ( b )反微胞

圖2-4、微胞與反微胞環境示意圖

(a) 微胞:界面活性劑親水端向外 (oil in water) (b) 反微胞:界面活性劑疏水端向外 (water in oil)

圖2-5、界面活性劑、水、有機溶液三相圖

圖2-6、液相-液相層析方法 (A) 傳統步驟式液相萃取。

(B) 逆流萃取 (CCE),兩相都是動相,分別往反方向移動。

(C) 液相-液相層析 (LLC),靜相是以固體支持物滯留在管柱中。

(D) 逆流層析 (CCC),靜相滯留不需固體支持物 (Support-free),

而是以重力場、離心力場將靜相滯留在管柱中。

(A) (B)

圖2-7、流體靜力平衡(HSES)示意圖 (A) 靜相為下層相,動相為上層相 (B) 靜相為上層相,動相為下層相

(A)

(B)

圖2-8(A)、抽取河水的螺旋裝置示意圖 (B)、螺旋管柱裝置模型

圖2-9、螺旋管柱中的輕重兩相移動情形

圖2-10、反扭轉機構轉動系統

分別是行星軸同步式、非行星軸同步、行星軸非同步式等三種,再變 化成七個模型

行星軸非同步 Nonsynchronous 行星軸同步

Synchronous

非行星軸同步 Nonplanetary

Bring Container to Central Axis

ω ω´

ω 2ω+ ω´

ω ω

ω

ω

Bring Container to Central Axis

ω ω ω´

ω

2ω+ ω´

圖2-11、高速逆流層析的旋轉機構

(A) 螺管支持物不僅以角速度 ω 繞著中心軸旋轉,同時自身也以相 同的角速度往相同方向旋轉

(B) 螺管支持物的同步行星運動可防止流體導入管與導出管扭轉

圖2-12、Ⅳ型同步行星式逆流層析的混合在管柱內的分佈情形

A B

圖3-1、逆流層析裝置圖

圖3-2、HPLC 實驗裝置圖

圖4-1、蛋白質在含有反微胞的逆流層析管柱中示意圖 (a)正向萃取-蛋白質分佈偏向進入反微胞

(b)反向萃取-蛋白質分佈偏向回到水中 (a)

(b)

mv

694.8

+MS, 1.2-1.2min (#69-#71)

0.0

400 600 800 1000 1200 1400 1600 m/z

616.2 1+

+MS, 0.0-0.1min (#3-#6)

0

400 600 800 1000 1200 1400 1600 m/z

616.6

+MS, 0.6-1.4min (#34-#76)

0.0

400 600 800 1000 1200 1400 1600 m/z

圖4-4、以 ESI-MASS 分析圖 4-3 中的樣品

圖4-5、肌紅蛋白中的heme分子 (MW=616)

0 20 40 60 80 100 120

0 20 40 60 80 100

percentage (%)

Time (min)

Mobile phae A1 pH 7 Mobile phae B1 pH 12

圖4-6、實驗一的逆流層析動相組成

動相A1:含有50mM Tris-HCl、0.1M KCl、pH 7 緩衝溶液 動相B1:含有50mM K2HPO4、 0.1M KCl、pH 12 緩衝溶液

mv

mv

minutes

0 20 40 60 80

0 500 1000

圖4-9、實驗二的逆流層析訊號

動相組成:A2 & B2 動相流速 1 mL/min UV 偵測器:280 nm

0 2 4 6 8 10 12 14 16 18

7 8 9 10 11 12

pH

Tubes

圖4-10、實驗二各收集管的 pH 值

(b)

cytochrome c

lysozyme myoglobin

圖4-11、HPLC 分析實驗二收集管中的蛋白質含量 (a)蛋白質的濃度(ppm)

(b)蛋白質的蛋白質相對濃度(%)

0 20 40 60 80 100 120

0 2 4 6 8 10 12 14 16

pH gradient curve

0 5 10 15

1 3 5 7 9 11 13 15 17

(a) cytochrome c

lysozyme

( b) cytochrome c lysozyme myoglobin

圖4-15、HPLC 分析實驗三收集管中的蛋白質含量 (a)蛋白質的濃度(ppm)

(b)蛋白質的蛋白質相對濃度(%)

6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 1 8 0 0 0 2 0 0 0 0 cytochrome c

(b)

cytochrome c

(c)

lysozyme

相關文件