• 沒有找到結果。

7-1、結論

綜合前面以水溶液法成長ZnO相關薄膜的實驗分析與結果,可以歸納以下 幾個結論。

1. 水溶液之製備需添加適量之非離子型複合界面活性劑(polyethylene glycol trimethylnonyl ether) 於醋酸鋅及醋酸鎂中,以旋轉塗布、烘烤及退火之製 程,可以在玻璃基板上成功的成長ZnO薄膜與Zn1-xMgxO薄膜;而界面活性 劑於硝酸鋅與硝酸銦中,則可以獲得Zn1-xInxO薄膜。

2. 在ZnO薄膜內摻雜或添加其他元素(Mg、In)進入薄膜內,薄膜元素之濃度跟 原始溶液之比例相當,有助於精確的控制薄膜組成。

3. ZnO薄膜經過300-500℃退火後,發現退火溫度在500℃以上時,薄膜的品質 較佳且表面平整度較佳,而低溫退火薄膜會有波浪皺摺出現。ZnO薄膜為 結晶品質較差的多晶薄膜,且沒有特定的優選方向,而薄膜穿透率在可見 光區可大於85%。而在ZnO TFT元件部分,雖然有元件特性,但因為薄膜本 身品質缺陷較多,造成元件特性不佳。

4. 在Zn1-xMgxO薄膜方面,Mg的摻雜使ZnO的薄膜有變得較緻密的趨勢;而 Zn1-xMgxO薄膜在500℃退火後的光穿透率在波長400~800nm的光波長範圍 內可大於90%,高於ZnO薄膜。

5. 摻雜Mg進入ZnO薄膜中的最大量約為40%;另外,ZnO薄膜的光能隙會隨

著Mg的摻雜量增加而提高,而且ZnO薄膜的電阻係數也會隨Mg的量增加而 500/50,所測得之臨界電壓約為-7V (Vd=30V),載子遷移率μ約為0.8cm2/Vs,

Id電流值約10-6 A,Ion/off約104

附錄一、ZnO JCPDS powder pattern.

No. 36-1451:

附錄二、In2O3 (6-0416)、Zn2In2O5 (20-1442)、Zn4In2O7 (20-1438)、Zn5In2O7

(20-1440) JCPDS powder patterns :

參考文獻:

[1] J.J. Chen, S. Jang, T.J. Anderson, ECS Transactions, “Fabrication process of ZnO-based LEDs”, State-of-the-Art Program on Compound Semiconductors XLIV 2, 153-172, 2006.

[2] Z.Z. Zhang, Z.P. Wei, Y.M. Lu, “p-Type ZnO on sapphire by using O2-N2

co-activating and fabrication of ZnO LED”

,

J. Cryst. Growth, 301– 302, 362–365, 2007.

[3] Y. Ryu, T.S. Lee, “Next generation of oxide photonic devices: ZnO- based ultraviolet light emitting diodes”, Appl. Phys. Lett., 88, 241108, 2006.

[4] Ü . Ö zgür, “A comprehensive review of ZnO materials and devices”, J.

Appl.Phys, 98, 041301, 2005.

[5] E. Fortunato, A. Pimentel, L. Pereira, “High field-effect mobility zinc oxide thin film transistors produced at room temperature

”,

J. Non-Cryst. Solids, 338–340, 806–809, 2004.

[6] S. Masuda, K. Kitamura, Y. Okumura, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties

”,

J. Appl. Phys., 93, 3, 2003.

[7] P.F. Carcia, R.S. McLean, M.H. Reilly, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”, Appl. Phys. Lett. 82, 7, 2003.

[8] R.L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility”, J. Appl.

Phys., 95, 10, 2004.

[9] E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, “Wide- bandgap high-mobility ZnO thin-film transistors produced at room

temperature”, Appl. Phys. Lett., 85, 13, 2004.

[10] Z.L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging”,

Nature, 451, 2008.

[11] Engineering a Small World: From Atomic Manipulation to Microfabrication, special section of Science, 254, 1300, 1991.

[12] S. Kandasamy, W. Wlodarski, A. Holland, “Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal

semiconductor field effect transistor”, Appl. Phys. Lett., 90, 064103, 2007.

[13] A.O. Dikovska, P.A. Atanasov, A.Ts. Andreev,

ZnO thin film on side polished optical fiber for gas sensing applications”, Appl. Sur. Sci., 254, 4, 1087-1090, 2007.

[14] B.J. Norris, J. Anderson, J.F. Wager, “Spin-coated zinc oxide transparent transistors”

,

J. Phys. D: Appl. Phys., 36, 20, L105-L107, 2003.

[15] H.S. Bae, M.H.Yoon, J.H. Kim,

Photodetecting properties of ZnO- based thin-film transistors”, Appl. Phys. Lett., 83, 25, 5313-5315, 2003.

[16] E. Fortunato, A. Pimentel, L. Pereira, “High field-effect mobility zinc oxide thin film transistors produced at room temperature

”,

J. Non-Cryst. Solids, 338–340, 806–809, 2004.

[17] P.F. Carcia, R.S. McLean, M.H. Reilly, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”, Appl. Phys. Lett., 82, 7, 1117-1119, 2003.

[18] R.L. Hoffman, B.J. Norris, J.F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett., 82, 5, 733-735, 2003.

[19] S. Masuda, K. Kitamura, Y. Okumura, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties

”,

J. Appl. Phys., 93, 3, 2003.

[20] K. Nomura, H. Ohta, K. Ueda, “Thin-Film Transistor Fabricated in

Single-Crystalline Transparent Oxide Semiconductor”, Science, 300, 5623,

1269-1272, 2003.

[21] J. Nishii, F.M. Hossain, S. Takagi, “High Mobility Thin Film Transistors with Transparent ZnO Channels”,Jap. J. Appl. Phys., Part 2: Letters, 42, 4,

L347-L349, 2003.

[22] D.H. Lee, Y.J. Chang,

A General Route to Printable High-Mobility

Transparent Amorphous Oxide Semiconductors”, Adv. Mat., 19, 6, 843-847, 2007.

[23] G. C. Chaun, J. S. Seok, S. B. Byeong, “Solution-Processed Indium-Zinc Oxide Transparent Thin-Film Transistors”, Electrochemical and Solid-State Letters, 11, 1, H7-H9, 2008.

[24] P. F. Carcia, R.S. McLean, M.H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition”, Appl. Phys.

Lett., 88, 123509, 2006.

[25] S. Tahir, P. O’Brien, “Deposition and characterisation of ZnO thin films grown by chemical bath deposition”, Thin Solid Films, 271, 35-38, 1995.

[26] Buguo Wang, M. J. Callahan, L. O. Bouthillette, “Hydrothermal Growth and Photoluminescence of Zn1-xMgxO Alloy Crystals”, Crystal Growth & Design, 6, 6, 2006.

[27] K.H. Yoon, J.Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater. Res. Bull., 35, 39-46, 2000.

[28] L. Chensha, L. Yuning, W. Yiliang, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film”, J. Appl. Phys., 102, 076101, 2007.

[29]. D. Jiles, “Introduction to the Electronic Properties of Materials”, Chapman &

Hill, 1994.

[30]. B.E. Semelius, “Band-gap tailoring of ZnO by means of heavy Al doping”,

[31]. A. Sarkar, “Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, 204, 255-264, 1991 [32]. A. Kompany, H. A. Rahnamaye Aliabad, S. M. Hosseini, “Effect of

substituted IIIB transition metals on electronic properties of indium oxide by first-principles calculations”, phys. stat. sol. (b) 244, 2, 619– 628, 2007.

[33]. V. Srikant, D.R. Clarke, “Optical absorption edge of ZnO thin films: the effect of substrate”, J. Appl. Phys. 81 (9), 6357, 1997

[34]. D.R. Vij, N. Singh, “Luminescence and Related Properties of II-VI Semiconductors”, Nova Science Publishers, N. Y.,1998

[35]. X.T. Zhang., J. Lumin. ,99, 149, 2002

[36]. K. Vanheusden et al., “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys., 79, 7983 ,1996

[37]. S.A.M. Lima et al., Int. J. Inorg. Mater., 3. 749, 2001

[38]. B.X. Lin, Z.X. Fu, Y. B. Jia, Appl. Phys. Lett., 79, 934, 2001

[39]. M. Liu, A.H. Kitai, P. Mascher,“Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese”, J. Lumin., 54, 35, 1992 [40]. M.S. Ramanachalam, A. Rohatgi,W.B. Carter, J. P. Schaffer, K. Gupta,

“Photoluminescence study of ZnO varistor stability”, J. Electron. Mater., 24, 4, 413, 1995

[41]. W.Fushan, “Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process”, Solid State Commun., 135, 34-37, 2005 [42] T. Minami, “Transparent conducting oxide semiconductors for transparent

electrodes”, Semicond. Sci. Technol., 20, S35–S44, 2005.

[43] A. Ohtomo, M. Kawasaki, T. Koida, “MgxZn1-xO as a II–VI widegap semiconductor alloy”, Appl. Phys. Lett., 72, 19, 1998.

[44] R. Kavitha, V.Jayaram, “Band-Gap Engineering in ZnO-MgO Films Prepared

by Combustion Flame Pyrolysis of Solution Precursors”,

J. Electron. Mater.,

36, 10, 2007.

[45] W.I. Park, G.C. Yi, H.M. Yang, “Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1–xMgxO(0

x

0.49) thin films”, Appl. Phys. Lett., 79, 2022, 2001.

[46] K. Tominaga, T. Takao, A. Fukushima, “Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets”, Vacuum, 66, 505–509, 2002.

[47] S.Y. Lee, B. O. Park, “Electrical and optical properties of In2O3-ZnO thin films prepared by sol-gel method”,Thin Solid Films, 484, 184–187, 2005.

[48] 陳慧英, 黃定加, 朱晴億, “溶膠凝膠法在薄膜製備上的應用”, 化工技術, 7, 11, 152-167, 1999.

[49] D. E. Bornside, C.W. Macosko, L. E. Scriven, “MODELING OF SPIN COATING”, J. Imag. Tech., 13, 4, 122-130, 1987.

[50]李潔如、牟中原, “微胞、微乳液的形成”,科學月刊, 298, 1994.

[51] C. Tanford, The Hydrophobic Effect, 2nd edn., Wiley, New York, 1980.

[52] M.E. Huque, "The Hydrophobic Effect", J. Chem. Edu., 66:581~585, 1989.

[53] P. K.Weimer, Proc. IRE, vol. 50, 1462,1962.

[54] L. Pichon, K. Mourgues, F. Raoult, “Thin film transistors fabricated by in situ doped unhydrogenated polysilicon films obtained by solid phase

crystallization”, Sci. and Tech., 16, 11, 918-924, 2001.

[55] H. Gleskova, P. I. Hsu, Z. Xi, J. Non-Crys.Sol., 203, 1996.

[56] H.E. Katz, A. J. Lovinger, J. Johnson, “A soluble and air-stable organic semiconductor with high electron mobility”, Nature, 404, 478, 2000.

[57] R.E. Presley, C. L. Munsee, C. H. Park, “Tin oxide transparent thin-film transistors”, J. Phys. D: Appl. Phys., 37, 2810, 2004.

[58] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, J. Non-Crys. Sol., 165, 198-200, 1996.

[59] K. Nomura, H. Ohta, A. Takagi, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, 432, 488, 2004.

[60] H. Q. Chiang, R. L. Hoffman, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer”, J. Jeong, Appl. Phys. Lett., 86, 13503, 2005.

[61] N. L. Dehuff, E. S. Kettenring, D. Hong, “Transparent thin-film transistors with zinc indium oxide channel layer”, J. Appl. Phys., 97, 6, 4505,2005.

[62] K. Nomura, H. Ohta, K. Ueda, “Thin-film transistors fabricated in

single-crystalline transparent oxide semiconductor”, Science, 300, 1269, 2003.

[63] S. M. Sze, "Semiconductor Devices Physics and Technology", Wiley, 204, 1985.

[64] 游家豪, 國立交通大學材料科學與工程學系碩士論文,“射頻濺鍍氧化鋅 薄膜於鍺基材之研究”, 2006

[65] D.M. Roessler, W.C. Walker, Phys. Rev. Lett. 17, 310, 1966.

[66] J.R. BELLINGHAM, W. A. PHILLIPS, C. J. ADKINS, “AMORPHOUS INDIUM OXIDE”, Thin Solid Films, I95, 23-31, 1991.

[67] J. W. McBain, Trans. Faraday Soc., 9, 99, 1913.

[68] S. Kikkawa, H. Sasakia, H. Tamuraa, ” (ZnO)3In2O3 fine powder prepared by combustion reactionof nitrates-glycine mixture”Materials Research Bulletin 39, 1821–1827, 2004.

[69] M. Fahoume, O. Maghfoul, M. Aggour, “Growth and characterization of ZnO thin films prepared by electrodeposition technique”, Solar energy materials and solar cells, 90, 10, 2006.

[70] A.M. Peiro, C. Domingo, J. Peral, “Nanostructured zinc oxide films grown from microwave activated aqueous solutions”, Thin Solid Films ,483, 79– 83, 2005.

[71] H.D. Suna, Y. Segawa, “Phonon replicas in ZnO/ZnMgO multiquantum wells”, J. Appl. Phys., 91, 10, 2002.

[72] R. Kavitha, V. Jayaram, “Band-Gap Engineering in ZnO-MgO Films Prepared by Combustion Flame Pyrolysis of Solution Precursors”, J. Electron. Mater., 36, 10, 2007.

[73]D. Zhao, Y. Liu, D. Shen, “Photoluminescence properties of MgxZn1-xO alloy thin films fabricated by the sol-gel deposition method”, J. Appl. Phys., 90, 11, 2001.

[74] L.A. Bendersky, “Microstructural study of epitaxial Zn1−xMgxO composition spreads”, J. Appl. Phys. 98, 083526, 2005.

[75] N. Naghavi, L. Dupont, C. Marcel, “Systematic study and performance optimization of transparent conducting indium–zinc oxides thin films”, Electrochimica Acta 46, 2007–2013, 2001.

[76] B. Kumar, H. Gong, “High mobility undoped amorphous indium zinc oxide transparent thin films”, J. Appl. Phys. 98, 073703, 2005.

[77] E.L. Kim, “Indium zinc oxide films deposited on PET by LF magnetron sputtering”, J. Phys. D: Appl. Phys. 40, 1784–1788, 2007.

[78] R. Martins, P. Barquinha, A. Pimentel, “Transport in high mobility amorphous wide band gap indium zinc oxide films”, p hys. stat. sol. (a) 202, 9, R95– R97, 2005.

[79] S.S. Shinde, P.S. Shinde, “Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films”, J. Phys. D: Appl. Phys.

41, 105109, 2008.

undoped and indium doped ZnO thin films prepared by the pyrosol process at different temperatures”, Thin Solid Films 416, 284–293, 2002.

[81] P. Hari, M. Baumer, W.D. Tennyson, “ZnO nanorod growth by chemical bath method”, Journal of Non-Crystalline Solids 354, 2843–2848, 2008.

[82] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Method”, Adv. Marter. 15, 5, 2003.

[83] Y. J. Kim, C. H. Lee, “ Controlled selective growth of ZnO nanorod and

microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett.

89, 163128, 2006.

[84] Juan Xie, Ping Li, “Synthesis of ZnO whiskers with different aspect ratios by a facile solution route”, p hys. stat. sol. (a) 205, 7, 1560–1565, 2008.

[85] X. Sui, Y. Liu, “Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant”, Chem. Phys. Lett., 424, 340–344, 2006.

[86] K.Y. Wu, C. C. Wang, “Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol–gel process”, Nanotechnology 18, 305604, 2007.

[87] S.C. Pillai, John M. Kelly, “The effect of processing conditions on varistors prepared from nanocrystalline ZnO”, J. Mater. Chem., 13, 2586–2590, 2003.

[88] H. Jia, Ye Zhang, X. Chen, “Efficient field emission from single crystalline indium oxide pyramids”, Appl. Phys. Lett., 82, 23, 2003.

[89] K. Ip, G.T. Thaler, “Contacts to ZnO”, J. Crys. Growth 287, 149–156, 2006.

[90] CRC Handbook of Chemistry and Physics, F-118, 1987

相關文件