• 沒有找到結果。

本研究針對以緩冷凝固製備且基地結晶(Zr48Cu32Al8Ag8,Ta4)Si0.75 金屬玻 璃複材(約 1.0mm 厚度),以 Nd:YAG 雷射進行重融非晶化改質研究,以確認 基地結晶的金屬玻璃複材是否可透過雷射改質再利用,其研究結果如下:

Part I、雷射表面改質 BMGC

1. 經過雷射表面改質後,XRD 圖顯示在 2θ 角為 30˚-50˚間出現一個明顯的 非晶峰,此外SEM 途中能發現結晶相 Zr/Cu 明顯消失。

2. TEM 觀測銲道與銲道重疊區域,結果顯示此二種區域表面分布次微米化 的Ta 顆粒,其周圍與基材間分布一層界面相,經擇區繞射鑑定為 ZrCu 相。

3. 熱物性質結果顯示,MC-BMGC 並不具有明顯的 BMG 特徵溫度峰;經 過雷射改質後的LSAF-BMGC 其各項特徵溫度接近於 IMA-BMGC。

4. 機 械 性 質 結 果 經 過 雷 射 表 面 改 質 後 , LSAF-BMGC 的 硬 度 值 與 IMA-BMGC 無太大差異。

5. 恆電位儀對 IMA-BMGC、MC-BMGC 及 LSAF-BMGC 浸泡至 3.5wt%

NaCl 水溶液之極化曲線結果表示在自然腐蝕發生的情況下,IMA-BMGC 與 LSAF-BMGC 發生腐蝕反應的機率略低,而 MC-BMGC 發生腐蝕反 應的機率較高;LSAF-BMGC 的腐蝕電位略低於 IMA-BMGC 推測其原 因在於銲點重疊部分殘留應力較高,腐蝕優先發生。

6. 表面腐蝕後觀察發現結晶與非結晶兩種 BMGC 表面上的腐蝕機制並非 相同,IMA-BMGC 與 LSAF-BMGC 採局部腐蝕的孔蝕與伽凡尼腐蝕,

MC-BMGC 受腐蝕表面則發現產生的均勻腐蝕行為。

78

Part II、整塊式雷射改質 BMGC

1. SEM 圖結果顯示經過參數 C(7.0J)與參數 D(7.5J)雷射整塊式雷射改質 後,原基地相中析出的葉片狀Zr/Cu 析出物在改質後消失,而銲道中的 Ta 強化相總體基百分率也有下降的趨勢,其部分轉變為次微米級的尺 寸,部分則來不及重新析出。

2. XRD 鑑定結果顯示參數 C(7.0J)、參數 D(7.5J)的 LWBAF-BMGCs 基材基 材呈現非晶態,除了特意添加的Ta 強化相峰值外,在 2θ 為 30˚-50˚時呈 現寬廣的非晶繞射峰。

3. 由 TEM 可以得知,基材與 Ta 顆粒的界面相環繞著一層 ZrCu,探討原因 為ZrCu 與 Ta 強化相具有相似的晶體結構與晶格常數,使 ZrCu 能於 Ta 周圍優先成核;此外,在經過連續的改質過程後,有部分 ZrCu 相厚度 會明顯增長,但基地相仍保有完好的非晶態。

4. 熱物性質量測結果指出,在經過雷射改後 Tg下降會使的ΔTx區間變寬,

而探討可能的原因為冷卻速率越快,原子自由體積越大會導致 BMGC 在升溫時越容易跨過玻璃轉態溫度。

5. 機械性質部分使用微小維氏硬度機量測,可以發現 MC-BMGC 由於基地 相內遍布大量結晶相,其硬度值最低;而LSAF-BMGC 與參數 C、D 的 LWBAF-BMGC 在硬度量測時與 IMA-BMGC 相差無幾,顯示總體基百 分率下降的Ta 顆粒對於硬度質的影響較小。

6. 腐蝕時, LWBAF-BMGC 的腐蝕機率會隨著雷射能量的上升而增高,是 由於銲道外圍的優先腐蝕所引發;但觀察腐蝕發生後的腐蝕速率,由於 雷射後部分的 Ta 強化相細化為次微米級,ZrCu 相的成核點較少,且部 分來不及析出的 Ta,有助於形成鈍態層,因此腐蝕速率較 IMA-BMGC 與MC-BMGC 低。

79

7. 觀 察 極 化 曲 線 的 鈍 態 層 區 域 , 可 以 知 道 參 數 C 與 參 數 D 的 LWBAF-BMGC 有較厚的鈍態層,其原因可以歸咎於未析出的 Ta 強化相 能進一步幫助基地相形成緻密的鈍態層。

80

第六章、參考文獻

1. C. Suryanarayana, and A. Inoue, Bulk metallic glasse Vol. 361, CRC press Boca Raton., FL, 2011.

2. O.N. Senkov et al., “Development and characterization of low-density Ca-based bulk metallic glasses: an overview”.

Metallurgical and Materials Transactions A, Vol.39, no.8, Aug.2008, pp.1888-1900.

3. A Inoue, “Bulk amorphous alloys” in Amorphous and Nanocrystalline Materials., Springer, 2001.

4. M. Freels et al, “Cyclic compression behavior of a Cu–Zr–Al–Ag bulk metallic glass”, Intermetallics, Vol.19, no.8, Aug.2011, pp.1174-1183.

5. W. Zhang et al., “Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability”, Materials Science and Engineering: B, Vol.148, no.1-3, Feb.2008, pp.92-96.

6. Q.K Jiang et al., “Zr–(Cu,Ag)–Al bulk metallic glasses”, Acta Materialia, vol.56, no.8, May.2008, pp.1785-1796.

7. N.H Tariq et al., “Evolution of microstructure and non-equilibrium phases in electron beam treated Zr55Cu30Al10Ni5 bulk amorphous alloy”, Journal of Alloys and Compounds, vol.460, no.1-2, Jul.2008, pp.258-262.

8. Q.S Zhang et al., “Effect of substituting elements on glass-forming ability of the new Zr48Cu36Al8Ag8 bulk metallic glass-forming alloy”, Journal of Alloys and Compounds, vol.504, no.1, Aug.2010, pp.S18-S21.

9. M. Miller and P. Liaw, Bulk metallic glasses: an overview, Springer, US, 2008.

10. U. Kühn et al., “Microstructure and mechanical properties of slowly cooled Zr–Nb–Cu–Ni–Al composites with ductile bcc phase”,

Materials Science and Engineering: A, vol.375-377, Jul.2004, pp.322-326.

11. K Hajlaoui et al., “Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis”, Scripta Materialia, vol.54, no.11, Jun.2006, pp.1829-1834.

81

12. J.S.C Jang et al., “Thermal and mechanical characterizations of a Zr-based bulk metallic glass composite toughened by in-situ precipitated Ta-rich particles”, Intermetallics, vol.18, no.42, Apr.2010, pp.560-564.

13. J.B Li et al., “Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particlesv, Materials Science and Engineering: A, vol.551, Aug.2012,

pp.249-254.

14. H.S. Wang et al., “A comparison of crystallization behaviors of laser spot welded Zr–Cu–Ag–Al and Zr–Cu–Ni–Al bulk metallic glasses”, Materials Chemistry and Physics, vol.139, no.1, Apr.2013,

pp.215-219.

15. H.S. Wang et al., “Microstructure evolution of the laser spot welded Ni-free Zr-based bulk metallic glass composites”, Intermetallics, vol.29, oct.2012, pp.92-98.

16. H.S Wang et al., “Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite”, Materials Characterization, vol.86, Dec.2013, pp.242-249.

17. H.S. Wang et al., “Effect of the volume fraction of the ex-situ reinforced Ta additions on the microstructure and properties of

laser-welded Zr-based bulk metallic glass composites”, Intermetallics, vol.68, Jan.2016, pp.87-94.

18. H.S. Wang, et al., “Microstructure evolution in Nd:YAG

laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy”, Journal of Alloys and Compounds, vol.495, no.1, Apr.2010, pp.224-228.

19. H.S. Wang, et al., “The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glassy”, Materials Chemistry and Physics, vol.129, no.1-2, Sep.2011, pp.547-552.

20. R. Busch, “The thermophysical properties of bulk metallic glass-forming liquids”, JOM, vol.52, no.7, Jul.2000, pp.39-42.

82

21. 黃宥棋,(Zr53Cu30Ni9Al8)99.5Si0.5

塊狀非晶質合金熱塑加工性 質及其顯微結構之研究

,2008 年,義守大學材料科學與工程學 系。

22. 邱茂盛,

預冷溫度對

(Zr53Cu30Ni9Al8)99.5Si0.5

金屬玻璃在

Nd:YAG

雷射點銲後微組織及機械性質影響之研究

,2010 年,義

守大學材料科學與工程學系。

23. 李偉豪,

鋯銅基塊狀金屬玻璃複合材料高溫氧化行為之探討

2014 年, 義守大學材料科學與工程學系。

24. 梁瑋鑫,

添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究

2016 年,國立中央大學。

25. A. Inoue et al., “Fabrication and mechanical properties of Mg–Zn–La amorphous alloys containing nanoscale hcp-Mg particles”, Materials Transactions, JIM, vol.33, no.4, 1992, pp.360-365.

26. L Liu et al., “Improvements in the plasticity and biocompatibility of Zr–Cu–Ni–Al bulk metallic glass by the microalloying of Nb”, Materials Science and Engineering: A, vol.449-451, Mar.2007, pp.193-197.

27. C.N. Kuo et al., “Comparison of mechanical response in CuZrAl–V and CuZrAl–Co bulk metallic glass composites”, Journal of Alloys and Compounds, vol.586, Supplement 1, Feb.2014, pp.S14-S19.

28. B. Zhang et al., “Synthesis and properties of tungsten balls/Zr-base metallic glass composite”, Materials Science and Engineering: A, vol.540, Apr.2012, pp.207-211.

29. M. Idriss et al., “Evolution of the elastic modulus of Zr–Cu–Al BMGs during annealing treatment and crystallization: Role of Zr/Cu ratio”, Journal of Non-Crystalline Solids, vol.421, 2015, pp.35-40.

83

30. G.V Afonin et al., “Structural relaxation and related viscous flow of Zr–Cu–Al-based bulk glasses produced from the melts with different glass-forming ability”, Intermetallics, vol.19, no.9, Sep.2011,

pp.1298-1305.

31. L. Wang et al., “Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass”, Materials & Design, vol.111, Dec.2016, pp.473-481.

32. L. Wang et al., “Effect of residual stresses on the hardness of bulk metallic glasses”, Acta Materialia, vol.59, no.7, Apr.2011,

pp.2858-2864.

33. F. Haag et al., “Influences of residual stresses on the serrated flow in bulk metallic glass under elastostatic four-point bending – A

nanoindentation and atomic force microscopy study”, Acta Materialia, vol.70, May.2014, pp.188-197.

34. A. Inoue et al., “Zr-Al-Ni Amorphous Alloys with High Glass

Transition Temperature and Significant Supercooled Liquid Region”, Materials Transactions, JIM, vol.31, no.3, 1990, pp.177-183.

35. Z.P. Lu et al., “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, vol.50, no.13, Aug.2002, pp.3501-3512.

36. X.H. Du et al., “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, vol.101, no.8, Apr.2007, pp.086108.

37. H. Zhang et al., “Joining of Zr51Ti5Ni10Cu25Al9 BMG to

aluminum alloy by friction stir welding”, Vacuum, vol.120, Part A, Oct.2015, pp.47-49.

38. N.H. Tariq et al., “Electron beam brazing of Zr62Al13Ni7Cu18 bulk metallic glass with Ti metal”, Vacuum, vol.101, Mar.2014,

pp.98-101.

39. B. Chen et al., “Laser welding of annealed Zr55Cu30Ni5Al10 bulk metallic glass”, Intermetallics, vol.46, Mar.2014, pp.111-117.

40. G Wang et al., “Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass”, Materials Science and Engineering: A, vol.541, Apr.2012, pp.33-37.

84

41. J. Kim et al., “Dissimilar welding of Zr41Be23Ti14Cu12Ni10 bulk metallic glass and stainless steel”, Scripta Materialia, vol.65, no.12, Dec.2011, pp.1033-1036.

42. 薛仲俊,Nd:YAG

雷射應用於

(Zr53Cu30Ni9Al8)99.5Si0.5

塊狀金屬 玻璃銲接之研究

,2010 年,義守大學材料科學與工程學系。

43. 鮮祺振、劉國橋,

金屬腐蝕及其控制

,1990 年,徐氏基金會。

44. 劉富雄,

防蝕技術

,1992 年,全華。

45. 柯賢正、王朝正,

腐蝕及其防制

,2014 年,全華。

46. J. Lee et al., “The development of a Zr-Cu-Al-Ag-N thin film

metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application”, Surface and Coatings Technology, vol.310, Jan.2017, pp.214-222.

47. Y. Li et al., “Role of late transition metals on pitting resistance of Zr-Ti-(Cu, Ni, Co)-Al bulk metallic glasses in 0.6 M NaCl aqueous solution”, Journal of Materials Science & Technology, Apr.2017.

48. H. Tian et al., “Corrosion behavior of in situ dendrite-reinforced Zr-based metallic glass matrix composites in NaCl solutions of varied concentrations”, Materials Chemistry and Physics, vol.162, Jul.2015, pp.326-331.

49. M.R. Debnath et al., “Effect of group 5 elements on the formation and corrosion behavior of Ti-based BMG matrix composites

reinforced by icosahedral quasicrystalline phase”, Journal of Alloys and Compounds, vol.612, Nov.2014, pp.134-142.

50. 圖源,中山大學,http://khvic.nsysu.edu.tw/khvic/jl/76.htm.

51. 圖源,成功大學,http://cmnst.ncku.edu.tw/files/15-1023-159102, c.-p.L.z.-t.

52. J.Du et al., “Phase stability, elastic and electronic properties of Cu–

Zr binary system intermetallic compounds: A first-principles study”, Journal of Alloys and Compounds, vol.588, Mar.2014, pp.96-102.

85

53. K.K. Song et al., “Thermal stability of B2 CuZr phase,

microstructural evolution and martensitic transformation in Cu–Zr–

Ti alloys”, Intermetallics, vol.67, 2015, pp.177-184.

54. K.K. Song et al., “Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys”, Acta Materialia, vol.59, no.17, Oct.2011, pp.6620-6630.

55. S. Pauly et al., “Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites”, Scripta Materialia, vol.60, no.6, Mar.2009, pp.431-434.

56. R.Wei et al., “Effect of lateral pre-compression on the compressive behavior of a CuZr-based bulk metallic glass composite containing B2-CuZr phase”, Materials Science and Engineering: A, vol.587, Dec.2013, pp.233-239.

57. ASTM E562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, 2011.

58. CRC Handbook of Chemistry and Physics Online. 2011: Taylor &

Francis.

相關文件