• 沒有找到結果。

一、試驗地環境參數量測

於 2006 年 2 月 14 日(晴天)與 2006 年 7 月 6 日(晴天)以 LI-250 連接光 量子感測器(LI-190)量測當日光度之日域變化;HOBO 溫濕度計測量當日溫 度與相對濕度之日域變化。

2006 年 2 月 14,自清晨 7 點開始量測試驗地(空曠地與各不同遮蔭程度 之蔭棚)之光度、溫度,與相對濕度之數值。以空曠地為例,光度從清晨 7 點開始測量,其數值將隨著時間增加而遞增。11 點時到達當日之最高光度 (1545 μmol photons m-2sec-1),迨 11 點過後,光度將隨時間的增加而減少(圖 1a)。溫度趨勢如同光度,最高溫度出現於 11 點時(27.1 ) (℃ 圖1b),而相對 濕度之日域變化乃與光度,溫度相反,最低濕度出現於11 時(43%)(圖 1c),

11 點過後相對溼度將隨著時間的增加而遞增。相對光度 60%、10%與 3%之 蔭棚,其光度與溫濕度之日域變化趨勢,乃與空曠地一致(圖 1)。

2006 年 7 月 6 日隸屬於當年夏季,為了配合葉綠素螢光日過程之量測,

當日環境參數之量測,將始於上午7:30,並迄於下午 18 時。光度與相對溼 度日過程之變化趨勢相似於冬季,最高光度出現於當日11:30(圖 2a);溼度 則是在12:30 屆於最低(圖 2c);然則溫度在上午 8:30 達到最高(圖 2b )。光 度與溫度屆於最大值後,都將隨時間的增加而減少,而相對濕度則是到達 低點後,將隨著時間增加而趨於遞增 (圖 2c)。

29

圖1、2006.02.14 試驗地(a)光度、(b)溫度與(c)相對濕度之日域變化。

Fig 1. On February 14, 2006, diurnal changes of (a) irradiation, (b) air temperatures,and (c) air relative humidity in the experimental site.

( b )

0 5 10 15 20 25 30 35

Temperatures (℃)

( c )

0 20 40 60 80 100

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Time (hours)

Relative humidity

outside 60% 10% 3%

( a )

0 300 600 900 1200 1500 1800

PPFD( μmol photons m-2 sec-1 )

30

圖2、2006.07.06 試驗地(a)光度、(b)溫度與(c)相對濕度之日域變化。

Fig 1. On July 06, 2007, diurnal changes of (a) irradiation, (b) air temper- atures, and (c) air relative humidity in the experimental site.

( b )

0 10 20 30 40 50

Temperatures(℃)

( c )

0 20 40 60 80 100

07:30 08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 Time (hours)

Relative humidity

outside 60% 10% 3%

( a )

0 300 600 900 1200 1500 1800 2100

PPFD (μmol photons m-2sec-1)

31

二、苗高與基徑之淨生長

由於試驗開始之際,苗高與基徑即不盡相同。因此將以 ANCOVA,排 除處理前(2005 年 10 月)對處理後(2006 年 6 月)之效應。

試驗處理對於各樹種之淨苗高生長皆具顯著效應(P<0.05),其中青剛 櫟、長尾尖葉櫧與鬼石櫟之苗高淨生長皆以相對光度 10%最高,相對光度 60%次之,相對光度 3%最劣。錐果櫟、赤皮與毽子櫟之最大苗高淨生長則 發生於相對光度60%,並隨處理光度的減少而下降 (表 1)。

各樹種的淨基徑生長,對於不同光處理呈顯著性(P<0.05),青剛櫟、

錐果櫟、赤皮、毽子櫟與鬼石櫟的淨基徑生長皆隨著處理光度的增加而遞 加,並在此次試驗之最大光度-相對光度 60%達到最大淨苗徑生長。長尾 尖葉櫧則是在相對光度 10%即具最大淨苗徑生長,在相對光度 60%與 10%

的淨苗徑生長並無顯著差異(表 1)。

表1. 不同處理光度下,6 種試驗樹種之苗高淨生長(cm)與基徑淨(mm) 生長。

Table 1. Net height growth and net diameter growth of 6 Fagaceae species seedlings in different light regimes.

parameters species light

regimes Net height growth (cm)

Net diameter growth (mm)

60% 19.01±11.34a(2.51) 2.25±1.17a(24.45)

10% 29.78±15.09b(3.93) 1.44±1.08b(15.65)

青剛櫟

3% 7.58±5.89c(1.00) 0.09±0.36c(1.00)

60% 30.67±16.01a(4.13) 3.85±1.40a(10.18)

錐果櫟

10% 24.89±9.16b(3.35) 1.68±0.56b(4.44)

3% 7.42±4.91c(1.00) 0.38±0.31c(1.00)

32

60% 28.18±14.55a(7.95) 3.37±1.63a(4.18)

10% 22.74±14.36a(6.42) 3.00±1.02b(3.71)

赤皮

3% 3.53±2.75b(1.00) 0.81±0.52c(1.00)

60% 14.28±12.33a(3.32) 1.77±1.37a(6.24)

10% 12.91±10.01a(3.00) 1.48±1.04b(5.22)

毽子櫟

3% 4.31±2.90b(1.00) 0.28±0.33c(1.00)

60% 21.26±20.78a(3.20) 2.15±1.77a(3.11)

10% 37.86±28.47b(5.71) 2.82±1.72b(4.07)

長尾尖 葉櫧

3% 6.64±5.75a(1.00) 0.69±0.51a(1.00)

60% 19.77±11.06a(1.48) 4.71±1.80a(5.81)

10% 32.90±16.68b(2.46) 2.93±1.52b(3.61)

鬼石櫟

3% 13.38±4.06a(1.00) 0.81±0.60c(1.00)

註:不同英文字母表示同一樹種於不同處理間之差異已達到5%之顯著水準;ns 則顯示

差異未呈顯著。()內的數值為各光處理下之均數與 3 種光處理下均數為最小值者之比

值。Value are means ±SD of n=37~50.Values in a column with different letters indicate significant different among the light regimes of the same species(ACOVA, p<0.05,by LSD procedure);ns indicate no significant. Values in parentheses represent value of each light regimes divided by the minimum mean in 3 light regimes.

33

Fig 3. Roots, stems ,leaves ,and plant of biomass(a) and the percentage of biomass allocated to Roots, stems, and leaves(b) of Cyclobalanopsis glauca grown in different light environments.Value are means ±SD of n=5

0 20 40 60 80

Plant weight Root weight Stem weight Leaf weight

Biomass ( g )

Light regimes

Biomass allocation ( % )

Root weight Stem wight Leaf weight

( b )

34

Fig 4. Roots, stems, leaves, and plant of biomass(a) and the percentage of biomass allocated to Roots, stems, and leaves(b) of Cyclobalanopsis longinux grown in different light environments. Value are means ±SD of n=5.

0

P lant weight Root weight St em weight Leaf weight

Biomass ( g )

Biomass allocation ( % )

Root weight Stem wight Leaf weight

( b )

35

Fig 5. Roots, stems, leaves, and plant of biomass(a) and the percentage of biomass allocated to Roots, stems, and leaves(b) of Cyclobalanopsis gilva grown in different light environments. Value are means ±SD of n=5.

0

Plant weight Root weight Stem weight Leaf weight

Biomass ( g )

Biomass allocation ( % )

Root weight Stem wight Leaf weight

( b )

36

Fig 6. Roots, stems, leaves, and plant of biomass(a) and the percentage of biomass allocated to Roots, stems, and leaves(b)of Cyclobalanopsis sessililfolia grown in different light environments. Value are means ±SD of n=5.

0

Plant weight Root weight Stem weight Leaf weight

Biomass ( g )

Biomass allocation ( % )

Root weight Stem wight Leaf weight

( b )

37

Fig 7. Roots, stems, leaves, and plant of biomass(a) and the percentage of biomass allocated to Roots, stems, and leaves(b)of Castanopsis cuspidata var. carlesii grown in different light environments. Value are means ±SD of n=5.

0

Plant weight Root weight Stem weight Leaf weight

Biomass ( g )

Biomass allocation ( % )

Root weight Stem wight Leaf weight

( b )

38

Fig 8. Roots, stems, leaves, and plant of biomass(a) and the percentage of biomass allocated to Roots, stems, and leaves(b) of Lithocarpus castanopsisifolius grown in different light environments. Value are means ±SD of n=5.

0

Plant weight Root weight Stem weight Leaf weight

Biomass ( g )

Biomass allocation ( % )

Root weight Stem wight Leaf weight

( b )

39

Table 2. Leaf area ratio of 6 Fagaceae species seedlings in different light regimes.

Light regimes

值。Value are means ±SD of n=5. Values with different letters indicate significant different among the light regimes of the same species(ANOVA, p<0.05,by LSD procedure);ns indicate no significant. Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes.

40

Table 3. specific leaf ratio of 6 Fagaceae species seedlings in different light regimes.

Light regimes species

134.93±17.37c

(1.67)

赤皮 95.53±6.51a

(1.00)

142.71±16.01a

(1.49)

298.46±65.63b

(3.30)

毽子櫟 79.58±8.58a

(1.00)

130.56±12.07b

(1.64)

161.98±9.41c

(2.04)

長尾尖葉櫧 109.50±12.62a

(1.00)

149.29±23.37b

(1.36)

192.37±17.48c

(1.76)

鬼石櫟 102.14±14.42a

(1.00)

136.14±7.40b

(1.33)

159.70±3.24c

(1.56)

註:不同英文字母表示同一樹種於不同處理間之差異已達到5%之顯著水準;ns 則顯示

差異未呈顯著。()內的數值為各光處理下之均數與 3 種光處理下均數為最小值者之比

值。Value are means ±SD of n=5. Values with different letters indicate significant different among the light regimes of the same species(ANOVA, p<0.05,by LSD procedure);ns indicate no significant. Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes.

41

五、葉綠體色素含量

不同光度處理對於 6 種試驗苗木之總葉綠素與類胡蘿蔔素濃度皆呈顯 著效應(P<0.05)。各試驗樹種中只有錐果櫟與毽子櫟之葉綠素 a 與葉綠素 b 濃度之比(Chl a/b)對光度呈顯著效應。光度對於類胡蘿蔔素與葉綠素濃度之 比(Car/Chl)的效應,除了毽子櫟之外,其於的 5 種皆呈顯著(表 4)。

(一)青剛櫟

光度處理對於青剛櫟的總葉綠素與類胡蘿蔔素濃度呈顯著效應(P<

0.05)。隨著光度的增加,總葉綠素與類胡蘿蔔素濃度將有下降之趨勢。青 剛櫟的Chl a/b 雖對光度無顯著效應,但隨著光度的增加,則具上升之趨勢。

Car/Chl 之比則對光度有顯著效應,並隨著光度增加而上升,但在相對光度 10%與 3%之差異較不明顯(表 4)。

(二)錐果櫟

光度處理對於錐果櫟的總葉綠素濃度、類胡蘿蔔素濃度、Chl a/b 與 Car/Chl 皆呈顯著效應(P<0.05)。隨著光度的增加,總葉綠素與類胡蘿蔔素 濃度有下降之趨勢,而Chl a/b 與 Car/Chl 則有上升之趨勢。Car/Chl 在相對 光度 10%與 3%之差異並不顯著,Chl a/b 則是在相對光度 60%與 10%之間 無顯著差異 (表 4)。

(三)赤皮

光度處理對於赤皮的總葉綠素與類胡蘿蔔素濃度呈顯著效應(P<

0.05)。隨著光度的增加,總葉綠素與類胡蘿蔔素濃度則將有下降之趨勢。

赤皮的Chl a/b 之比對光度無顯著效應,然其 Car/Chl 則對光度有顯著效應,

並隨著光度增加而提升(表 4)。

(四)毽子櫟

光度處理對於赤皮的總葉綠素濃度、胡蘿蔔素濃度與 Chl a/b 呈顯著效 應(P<0.05)。隨著光度的增加,總葉綠素與類胡蘿蔔素濃度將有下降之趨

42 素(mg/g)含量與 Chl a/b、Car/Chl。

Table 4. Chlorophyll and carotenoid content per unit mass,Chl a/b,Car/Chl of 6 Fagaceae species seedlings in different light regimes.

parameters Species Light

regimes Chlorophyll Carotenoid Chl a/b Car/Chl

青剛櫟 60% 0.93±0.27a

43

值。Value are means ±SD of n=3. Values in a column with different letters indicate significant different among the light regimes of the same species(ANOVA, p < 0.05 , by LSD procedure);ns indicate no significant. Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes.

44

(6)(Pearcy and Pfitsch,1995;Lambers et al.,1998)後所得。

Fig 9. model estimated, and actual measured photosynthetic light-response curves of 6 Fagaceae species seedlings - (a) Cyclobalanopsis glauca, (b)Cyclobalanopsis longinux, (c)Cyclobalanopsis gilva, (d)Cyclobalanopsis sessililfolia, (e)Lithocarpus castanopsisifolius, and (f)Castanop -sis cuspidata var. carlesii grown in different light regimes. The values were averaged over 5 leaves of different seedling of the same species and estimates were fitted with model (6) propose by Pearcy and Pfitsch(1995) and Lambers et al.

(1998).

Net photosynthetic rate mol CO2 m-2sec-1)

( b )

Net photosynthetic rate mol CO2 m-2sec-1)

( a )

Net photosynthetic rate mol CO2 m-2sec-1)

( d )

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 PPFD (μmol photon m-2sec-1)

Net photosynthetic rate molCO2m-2sec-1)

60% 10% 3% 60% 10% 3%

Net photosynthetic rate (μmol CO2 m-2sec-1)

( c )

0 200 400 600 800 1000 1200 1400 1600 1800 2000 PPFD (μmol photon m-2sec-1)

Net photosynthetic rate mol C02 m-2sec-1)

60% 10% 3% 60% 10% 3%

( e )

45

Table 5. Maximum photosynthetic rate of 6 Fagaceae species seedlings in different light regimes.

Light regimes species

(6)(Pearcy and Pfitsch,1995;Lambers et al.,1998)配適而來。Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes. Data fit to model (6) propose by Pearcy and Pfitsch(1995) and Lambers et al. (1998).

46

(二)暗呼吸速率(Rd)

試驗樹種於相對光度 60%具最大 Rd;其 Rd 將隨著環境光度的減少,

而有下降之趨勢 (表 6)。

表 6. 不同光度處理下 6 種試驗樹種之暗呼吸速率(Rd) (μmol CO2 m-2sec-1)。

Table 6. Dark respiration of 6 Fagaceae species seedlings in different light regimes.

Light regimes species (Pearcy and Pfitsch, 1995;Lambers et al., 1998)配適而來。Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes. Data fit to model (6) propose by Pearcy and Pfitsch(1995) and Lambers et al. (1998).

47

Table 7. Quantum yield of 6 Fagaceae species seedlings in different light regimes.

Light regimes species

迴歸方式獲得。Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes. Date were calculated by general linear model.

48

(四)光補償點(LCP)

青剛櫟、錐果櫟、赤皮、毽子櫟與長尾尖葉櫧之 LCP 具隨處理光度增 加而上升之趨勢;鬼石櫟之LCP 在 3 種光處理間無差異 (表 8)。

表 8. 不同光度處理下 6 種試驗樹種之光補償點(LCP)(μmol CO2 m-2sec-1)。

Table 8. Light compensation point of 6 Fagaceae species seedlings in different light regimes.

Light regimes species

性迴歸方式獲得。Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes. Date were calculated by general linear model.

49

Table 9. Maximum electron transport rate of 6 Fagaceae species seedlings in different light regimes.

Light regimes species

式(7)( Ralph and Gademann, 2005)配適而來。Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes. Data fit to model (7) propose by Ralph and Gademann(2005)

50

2.非光化學消散(NPQ)

光度處理對於錐果櫟、赤皮、毽子櫟、鬼石櫟與長尾尖葉櫧之 NPQ 的效應皆呈顯著(P<0.05),對青剛櫟則否(P>0.05)。6 種試驗樹種之 NPQ 在相對光度 60%皆具最大值,且皆具隨處理光度的下降而有遞減之趨勢 (表 10)。

表10. 在 RLC 光階為 1820 μmol photons m-2sec-1情況下,不同光處理的6 種試 驗樹種之NPQ。

Table 10. At actinic irradiance condition of 1820 μmol photons m-2sec-1 of RLC steps, NPQ of 6 Fagaceae species seedlings in different light regimes.

Light regimes species

值。Value are means ±SD of n=5. Values with different letters indicate significant different among the light regimes of the same species(ANOVA, p<0.05,by LSD procedure);ns indicate no significant. Values in parentheses represent value of each light regimes divided by the minimum value in 3 light regimes.

51

(二)PSII 最大光能轉換效率(Fv / Fm)

光度處理對於青剛櫟與長尾尖葉櫧之 Fv / Fm效應呈顯著狀(P<0.05),

對其餘的4 種試驗樹種則呈不顯著(P>0.05)。青剛櫟、錐果櫟、赤皮、長 尾尖葉櫧與鬼石櫟之 Fv / Fm在相對光度 60%中具最小值,其中以長尾尖葉 櫧之值最小(為 0.69,其餘者約略 0.76-0.78),而 5 者之 Fv / Fm在相對光度 10%與 3%間差異不大。毽子櫟之 Fv / Fm在3 種光處理中則無差異(圖 10)。

圖10、2006 年 7 月 6 日午夜,6 種試驗樹種在不同光度處理下之 Fv / Fm。 Fig 10. At midnight on July 6, 2007, Fv / Fm of 6 Fagaceae species seedlings in different light treatments.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

青剛櫟 錐果櫟 赤皮 毽子櫟 長尾尖葉櫧 鬼石櫟

F

v

/ F

m

60% 10% 3%

a b b ns ns ns

ns ns ns

ns ns ns

a

b b ns ns ns

52

(三)螢光參數之日域變化

1.PSII 實際光能轉換效率(ΦPSII)之日域變化

在不同遮蔭程度下之 6 種試驗苗木之 ΦPSII皆隨光度日過程之變化而 改變。

清晨 7:30 乃試驗開始之際,此時各光處理下之 6 種試驗樹種皆可 測得當日最高之ΦPSII。其後將隨著日域光度增加而下降;上午11:30,

ΦPSII達到當日最低點,正午過後光度急速下降,而 ΦPSII亦將遞增。下 午18 點為試驗結束之際,此時 ΦPSII則恢復至試驗初始之值,甚至超過 (圖 11)。

53

圖11、2006 年 7 月 6 日各處理光度下(a)相對光度 60%、(b)相對光度 10%,(c) 相對光度3%,6 種試驗樹種 ΦPSII之日域變化。

Fig 11. On July 6, 2007, diurnal changes of ΦPSII of 6 Fagaceae species seedlings in 3 light treatments - (a) 60%, (b) 10% and (c) 3% relative light intensity, respectively.

PPFD ( μmol photons m-2 sec-1 )

( a )

PPFD ( μmol photons m-2 sec-1 )

( b )

0.40 0.60 0.80 1.00

07:30 09:30 11:30 14:00 16:00 18:00

Time(hours)

PPFD ( μmol photons m-2 sec-1 )

青剛櫟 錐果櫟 赤皮 毽子櫟 長尾尖葉櫧 鬼石櫟 PPFD

( c )

54

2.非光化學消散(NPQ) 之日域變化

不同光處理下之 6 種試驗苗木之 NPQ,皆隨日域光度之變化而改 變。NPQ 日域變化趨勢類似於光度日域變化,而相反於 ΦPSII與Fv / Fm

在相對光度 60%與 10%處理中,6 種試驗樹種之 NPQ 於試驗開始 之際,即隨日域光度之增加而遞增。11 點 30 時,當日光度達到最大,

在相對光度 60%與 10%處理中,6 種試驗樹種之 NPQ 於試驗開始 之際,即隨日域光度之增加而遞增。11 點 30 時,當日光度達到最大,

相關文件