• 沒有找到結果。

表現登革熱病毒非結構蛋白 NS1 在 E.coli C41(DE3)和 C43(DE3)

表現系統

非結構蛋白NS1 已可利用 E.coli 系統大量表現(Das et al., 2009),因此 欲表現DV2 之 NS1 蛋白以探討蛋白質表現的結果。

NS1-HAHis 的分子量大小預期大小約為 44.7。皆可於上清液與 pellet 偵測到大小分別為50 kDa、45 kDa、40 kDa 的蛋白質,45kDa 的大小較符 合預期。此三條蛋白質於C41(DE3)菌株 pellet 中也能以 Coomassie blue staining 偵測到,蛋白質表現量似乎較 NS2、NS4 與 E 來的多。

為了確認在表現NS1-HAHis 蛋白質所出現的不專一性片段是否與 C41

NS1 可經由 E.coli BL21(DE3)進行蛋白質大量表現及純化,Western blot 結果顯示並無雜片段的形成(Das et al., 2009),因此將 pET 5T△ -D2NS1 -HAHis 轉型到 BL21 菌株作蛋白質表現,就 Coomassie blue staining 的結果 觀察,pET 5T△ -D2NS1-HAHis 在 C41(DE3)與 C43(DE3)菌株無法觀 察出明顯蛋白質表現,但在BL21(DE3)菌株則可觀察出源於 NS1-HAHis 所產生的雜片段,Western blot 的結果則與 C41(DE3)和 C43(DE3)菌株 表現一樣,在 50 kDa、45 kDa、40 kDa 的大小可以偵測到蛋白質,其中 45 kDa 大小的片段符合預期,但是相較於 50 kDa、40 kDa 等雜片段,並無法 以Coomassie blue staining 測得,換言之,其雜片段的表現量較佳,雜片段 的問題還是無法加以解決。

由於有三條蛋白質片段,為了加以確認 NS1-HAHis 蛋白質表現的結

果,將 NS1 基因於 3’端的部分截短 336 bp,並建構 pET 5T△ -D2NS1(d)- HAHis 質體,想觀察蛋白質大小位移的狀況。其表現出的蛋白質為 NS1(d) -HAHis,預期的分子量約 32.1 kDa。利用 Western blot 偵測,可於上清液及 pellet 偵測到分子量大小約 40 kDa、33 kDa、26 kDa 的蛋白質,以 33 kDa 大小的片段較符合預期結果。其結果呈現與pET 5T△ -D2NS1-HAHis 表現結 果相似,而40kDa 與 26kDa 的蛋白質同樣也可於 Coomassie blue staining 偵 測到,相較於pET 5T△ –D2NS1-HAHis 在 C41(DE3)和 C43(DE3)菌株 中的表現,其pET 5T△ –D2NS1(d)-HAHis 表現量較佳,推測截短其 C 端疏 水性片段將有助於在 E.coli 系統蛋白質大量表現。

將pET 5T△ -D2NS1-HAHis 與 pET 5T△ -D2NS1(d)-HAHis 做蛋白質表現 比較後發現,前者所表現出的蛋白質片段分別為50 kDa、45 kDa、40 kDa,

後者則為40 kDa、33 kDa、26 kDa,截短後皆縮小了約 10 kDa 左右。推測 此三條截短蛋白質與NS1 基因 3’端截短有密切關係。

為了探討片段的形成是否與載體pET 5T△ -HAHis 有關?由於 pET 5T△ - HAHis 載體是由 pET-30a(+)載體修飾而成【圖 3.1】,因此我將 PL046 strain 中之NS1 基因重新建構於未經修飾之 pET-30a(+)載體,並於 NS1 基因 3’端 建構HAHis tag 以利於 Western blot 抗體偵測,建構完成之質體為 pET-30a

-D2NS1-HAHis,並同樣轉型於 C41(DE3)和 C43(DE3)菌株中表現,

由於所轉錄之NS1-HAHis 包含 pET-30a(+)載體之 5’端 His tag 與 S tag,因 此NS1-HAHis 的分子量大小約 50 kDa,以 Western blot 抗體偵測的結果與 pET 5T△ -D2NS1-HAHis 在 C41(DE3)與 C43(DE3)菌株中表現結果類 似,分別在55 kDa、50 kDa 與 45 kDa 的位置可以偵測到蛋白質,50 kDa 符合預期大小,但雜片段的現象並沒有因更換pET-30a(+)載體而有所改善,

因此雜片段和蛋白質表現量似乎與pET-30a(+)載體 5’端修飾沒有直接相關。

此三條蛋白質中,以pET 5T△ -D2NS1-HAHis 來看,分子量 50 kDa 的 蛋白質較預期的44.7 kDa 來的大,由於 NS1 之 N 端具有 heterologous signal peptide 與 hemagglutinin epitope,推測可能其 N 端與胞內之物質鍵結,導致 分子量變大(Noisakran et al., 2007)。較預期分子量略小的蛋白質片段(約 40 kDa),推測與 NS1-HAHis 之 N 端修飾有關,由於其 N 端有 linear epitopes,可能較容易被細菌胞內之 protease 水解,導致分子量略為變小

(Falconar et al., 1994)。

伍、結 論

本研究運用大腸桿菌之蛋白質表現系統 C41(DE3)與 C43(DE3),

表現登革熱病毒DV-2 PL046 strain 及 DV-3 H87 strain 之 HA-His 複合蛋白

(influenza hemagglutinin-polyhistidine protein),包括非結構蛋白 NS2A、

NS2B、NS4A、NS4B 及外膜蛋白(E),以及 PL046 strain 之 NS1 非結構 蛋白,其基因接於 pETΔ5T-HAHis 載體中皆可成功的被表現出來,不過僅 可於Western blot 中可偵測到蛋白質表現。

大腸桿菌C41(DE3)與 C43(DE3)菌株通常用於大量表現膜蛋白或 對宿主細胞有毒害的蛋白質並能避免宿主細胞死亡(Dumon-Seignovert et al., 2004),尤其可以改善 PL046 strain 之 NS2A-HAHis 蛋白質在 BL21(DE3)

中無法以Western blot 中可偵測到蛋白質表現的情形(楊馥嘉, 2006, 交大碩 士論文),但 C41(DE3)與 C43(DE3)在蛋白質的表現中卻仍然無法以 Coomassie blue 的染色方式觀察到蛋白質表現的情形,顯示蛋白質的表現量 仍然相當微量(<10-6 mg),並有蛋白質結合或水解等現象。此外,文獻指 出Dengue virus Type-1 之 NS1 可經由 E.coli BL21(DE3)進行蛋白質大量表現

(Das et al., 2009),因此本研究不能大量表現 NS1 的原因就值得進一步探 討。根據前人研究,如能將大腸桿菌大量培養加以純化濃縮,才能得到適 量的蛋白質以利於進行Coomassie blue 染色觀察(Khromykh et al., 1996)。

陸、參考文獻

Alcon-LePoder S, Drouet MT, Roux P, Frenkiel MP, Arborio M, Durand- Schneider AM, Maurice M, Le Blanc I, Gruenberg J, Flamand M. 2005. The secreted form of dengue virus nonstructural protein NS1 is endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity.

J Virol, 79(17):11403-11411.

Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE. 2000. Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett, 482(3):215-9.

Bazan JF, Fletterick RJ. 1989. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology,171:637-639.

Blackwell JL, Brinton MA. 1997. Translation elongation factor-1 alpha interacts with the 3_ stem-loop region ofWest Nile virus genomic RNA. J Virol, 71(9):6433-6444.

Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. 2004. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J, 23(4):728-738.

Brinkworth RI, Fairlie DP, Leung D, Young PR. 1999. Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol, 80 (Pt 5):1167-77.

Brock KV, Deng R, Riblet SM. 1992. Nucleotide sequencing of 5_ and 3_

termini of bovine viral diarrhea virus by RNA ligation and PCR. J Virol Methods, 38(1):39-46.

Chambers TJ, Droll DA, Tang Y, Liang Y, Ganesh VK, Murthy KH, Nickells M.

2005. Yellow fever virus NS2BNS3 protease: characterization of charged-to-alanine mutant and revertant viruses and analysis of polyprotein-cleavage activities. J Gen Virol, 86(Pt 5):1403-1413.

Chambers TJ, McCourt DW, Rice CM. 1990. Production of yellow fever virus proteins in infected cells: identification of discrete polyprotein species and analysis of cleavage kinetics using region-specific polyclonal antisera. Virology, 177:159-174.

Chambers TJ, Weir RC, Grakoui A, McCourt DW, Bazan JF, Fletterick RJ, Rice CM. 1990. Evidence that the Nterminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A, 87:8898-8902.

Chang YS, Liao CL, Tsao CH, Chen MC, Liu CI, Chen LK, Lin YL. 1999.

Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol, 73(8):6257-64.

Cleaves GR, DubinDT. 1979. Methylation status of intracellular dengue type 2 40 S RNA. Virology, 96:159-165.

Clyde K, Harris E. 2006. RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol, 80(5):2170-82.

Clyde K, Kyle JL, Harris E. 2006. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol, 80(23):11418-31. Review.

Crabtree MB, Kinney RM, Miller BR. 2005. Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch Virol, 150(4):771-786.

Crooks AJ, Lee JM, Easterbrook LM, Timofeev AV, Stephenson JR. 1994. The NS1 protein of tickborne encephalitis virus formsmultimeric species upon secretion from the host cell. J Gen Virol, 75(Pt 12):3453-3460.

Das D, Mongkolaungkoon S, Suresh MR. 2009. Super induction of dengue virus NS1 protein in E. coli. Protein Expr Purif, 66(1):66-72.

De Nova-Ocampo M, Villegas-Sepulveda N, del Angel RM. 2002. Translation elongation factor-1alpha, La, and PTB interact with the 3_ untranslated region of dengue 4 virus RNA. Virology, 295(2):337-347.

Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee KH, Wang S. 2004.

West Nile virus core protein; tetramer structure and ribbon formation. Structure, 12(7):1157-1163.

Dumon-Seignovert L, Cariot G, Vuillard L. 2004. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif, 37(1), 203-6.

Edgil D, Diamond MS, Holden KL, Paranjape SM, Harris E. 2003. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology, 317(2):275-290.

Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside- 2_-O-)-methyltransferase in the flavivirus RNA polymerase NS5:

crystal structure and functional characterization. EMBO J, 21(11):2757-2768.

Erbel P, Schiering N, D'Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U. 2006. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol, 13(4):372-373

Evans JD, Seeger C, 2007. Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol, 81(21):11809-16.

Falgout B, Chanock R, Lai C-J. 1989. Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a. J Virol, 63(5):1852-1860.

Falgout B, Markoff L. 1995. Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol, 69(11):7232-7243.

Falgout B, Pethel M, Zhang YM, Lai CJ. 1991. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of Dengue virus nonstructural proteins. J Virol, 65:2467-2475.

Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V. 1999. Dengue virus type 1 nonstructural glycoproteinNS1is secreted frommammaliancells as a soluble hexamer in a glycosylation-dependent fashion. J Virol, 73(7):6104-6110.

Gorbalenya AE, Donchenko AP, Koonin EV, Blinov VM. 1989. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases.

Nucleic Acids Res, 17(10):3889-3897.

Guha-Sapir D, Schimmer B. 2005. Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol, 2(1):1. Review.

Hall RA, Khromykh AA, Mackenzie JM, Scherret JH, Khromykh TI, Mackenzie JS. 1999. Loss of dimerisation of the nonstructural protein NS1 of Kunjin virus delays viral replication and reduces virulence in mice, but still allows secretion of NS1. Virology, 264(1):66-75.

Jacobs MG, Robinson PJ, Bletchly C, Mackenzie JM, Young PR. 2000. Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol- linked form that is capable of signal transduction. FASEB J, 14(11):1603-10.

Jones CT, Ma L, Burgner JW, Groesch TD, Post CB, Kuhn RJ. 2003. Flavivirus capsid is a dimeric alpha-helical protein. J Virol, 77(12):7143-7149.

Khromykh AA, Harvey TJ, Abedinia M, Westaway EG. 1996. Expression and purification of the seven nonstructural proteins of the flavivirus Kunjin in the E.

coli and the baculovirus expression systems. J Virol Methods, 61(1-2), 47-58.

Kiermayr S, Kofler RM, Mandl CW, Messner P, Heinz FX. 2004. Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. J Virol, 78(15):8078-8084.

Kümmerer BM, Rice CM. 2002. Mutations in the yellowfever virus nonstructural Protein NS2Aselectively block production of infectious particles. J Virol, 76(10):4773-4784.

Lee JM, Crooks AJ, Stephenson JR. 1989. The synthesis and maturation of a non-structural extracellular antigen from tick-borne encephalitis virus and its relationship to the intracellular NS1 protein. J Gen Virol, 70:335-343.

Lemes EM, Miagostovicsh MP, Alves AM, Costa SM, Fillipis AM, Armoa GR, Araujo MA. 2005. Circulating human antibodies against dengue NS1 protein:

potential of recombinant D2V-NS1 proteins in diagnostic tests. J Clin Virol, 32(4):305-12.

Lindenbach BD, Rice CM. 1999. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol, 73(6):4611-4621.

Lindenbach BD, Rice CM. 2003. Molecular biology of flaviviruses. Adv Virus Res, 59:23-61.

Lindenbach BD, Thiel HJ, Rice CM. 2007. Flaviviridae: the viruses and their replication. In: Fields Virology. 5th Edition. DM Knipe, PM Howley, Eds.

Philadelphia: Lippincott-Raven Publishers.

Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA. 2004. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol, 78(22):12225-12235.

Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA. 2006. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol, 80(5):2396-2404.

Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB. 2004. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A, 101(10):3414-3419.

Mackenzie JM, Khromykh AA, Jones MK, Westaway EG. 1998. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology, 245(2):203-215.

Mason PW. 1989. Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology, 169(2):354-364.

Miller S, Sparacio S, Bartenschlager R. 2006. Subcellular localization and membrane topology of the dengue virus type 2 nonstructural protein 4B. J Biol Chem, 281(13):8854-8863.

Miller S, Kastner S, Krijnse-Locker J, Bühler S, Bartenschlager R. 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner.J Biol Chem, 282(12):8873-82.

Miroux B, Walker JE. 1996. Over-production of Proteins in Escherichia coli:

Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. J. Mol Biol, 260(3), 289-298

Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature, 427(6972):313–319.

Muñoz-Jordan JL, Sánchez-Burgos GG, Laurent-Rolle M, García-Sastre A.

2003. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A, 100(24):14333–14338.

Muñoz-Jordán JL, Laurent-Rolle M, Ashour J, Martínez-Sobrido L, Ashok M, Lipkin WI, García-Sastre A. 2005. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol, 79(13):8004–8013.

Muylaert IR, Galler RG, Rice CM. 1996. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology, 222:159–168.

Nestorowicz A, Chambers TJ, Rice CM. 1994. Mutagenesis of the yellow fever virus NS2A/2B cleavage site: effects on proteolytic processing, viral replication and evidence for alternative processing of the NS2A protein. Virology, 199:114–123

Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, Angsuthanasombat C, Panyim S, Katzenmeier G. 2004. Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol, 78(24):13708–13716.

Noisakran S, Dechtawewat T, Rinkaewkan P, Puttikhunt C, Kanjanahaluethai A, Kasinrerk W, Sittisombut N, Malasit P. 2007. Characterization of dengue virus NS1 stably expressed in 293T cell lines. J Virol Methods, 142(1-2):67-80.

Nowak T, Wengler G. 1987. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology, 156(1): 127–137.

Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH.

2005. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature, 437(7059):764–769.

Perera R, Kuhn RJ. 2008. Structural proteomics of dengue virus. Curr Opin Microbiol, 11(4):369-77.

Pryor MJ, Wright PJ. 1993. The effects of site-directed mutagenesis on the dimerization and secretion of the NS1 protein specified by dengue virus.

Virology, 194(2):769–780.

Roosendaal J, Westaway EG, Khromykh A, Mackenzie JM. 2006. Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein.

J Virol, 80(9), 4623-32.

Smith TJ, Brandt WE, Swanson JL, McCown JM, Buescher EL. 1970. Physical and biological properties of dengue-2 virus and associated antigens. J Virol, 5:524–532.

Umareddy I, Chao A, Sampath A, Gu F, Vasudevan SG. 2006. Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol, 87(Pt 9):2605-14.

Voet-van-Vormizeele J, Groth G. 2003. High-level expression of the Arabidopsis thaliana ethylene receptor protein ETR1 in Escherichia coli and purification of the recombinant protein. Protein Expr Purif, 32(1):89-94.

Wengler G,Wengler G, Gross HJ. 1978. Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology, 89:423–437.

Westaway EG, Mackenzie JM, Khromykh AA. 2002. Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol, 267:323–351.

Winkler G, Maxwell SE, Ruemmler C, Stollar V. 1989. Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology, 171(1):302–305.

Winkler G, Randolph VB, Cleaves GR, Ryan TE, Stollar V. 1988. Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology, 162(1):187–196.

林柏吟. 2005. 表現登革病毒 2 型 PL046 外膜蛋白以用於建構假型小鼠白血

林柏吟. 2005. 表現登革病毒 2 型 PL046 外膜蛋白以用於建構假型小鼠白血

相關文件