• 沒有找到結果。

不會有太大的增加,本實驗在吸附初始階段 10 分鐘已吸附大量分

吸附,對於在水中不解離的芳香族碳氫化合物、鹵化醚類化合物,

bisphenol-A(4,4-Isopropylidenediphenol)、TEGDMA、EGDMA (Ethylene glycoldimethacrylate)、MMA(Methylacrylate)、MA

(Methacrylic)六種低分子物質開發 SPME-GC-MS 方法,而其 SPME 的參數無一完整探討,以開發 SPME 方法而言是不足的,相對本研

究將所有直接浸入SPME 參數逐一探討,找出適合參數並探討其分 Tetric ceram 溶出 Bis-GMA > UDMA > TEGDMA;Palfique Estelite 溶出 Bis-GMA > TEGDMA;Compoglass flow 溶出 UDMA;Spectrum

出量隨著減少,但當 pH 值大於 9 時UDMA、Bis-GMA 溶出量幾乎 為零。

唾液樣本在所有浸泡天數下皆無偵測到 TEGDMA、UDMA、

Bis-GMA,而唾液中所含的酶已被證實與酵素 CE、PCE 有同樣的 能力能夠分解 TEGDMA、Bis-GMA 這些被溶出的單體 18,分解後 的產物包括 Methacrylic(MA)、Triethyleneglycol methacrylate

(TEGMA)、Bishydroxyproxyphenylpropane、(BisHPPP)、Ethoxylated Bisphenol A (E-BPA),而 TEGDMA、UDMA、Bis-GMA 研究指出 皆會造成過敏反應及細胞基因毒性,但對於這些產物的毒性研究除 了 MA 因用途較廣,有相關毒性研究指出其毒性 32,其他產物皆無 著墨,由結果顯示,樹脂溶出物在唾液中 12 小時之後,完全被酶 所分解,評估樹脂於唾液環境中溶出對人體健康危害,應考量到產 物是較適當的。

第肆章 圖表附錄

4-1 附圖

圖4-1 HPLC 分析圖

4-2-1 附圖

CW/TPR PDMS/DVB DVB/CAR/PDMS Polyacrylic

Fiber

RSD TEGDMA

UDMA Bis-GMA

圖 4-2-1b 不同纖維的 RSD 圖

4-2-2 附圖

4-2-3 附圖

mobile phase 100% acetonitrile 100% ethanol desorption solvent

RSD TEGDMA

UDMA Bis-GMA

4-2-3b 不同脫附劑下之 RSD 值

4-2-4 附圖

0 10 20 30 40 50 60 70 80 90 100

5 10 15 20

desorption time(min)

RSD TEGDMA

UDMA Bis-GMA

4-2-4c 不同脫附時間下之 RSD 值

4-2-5 附圖

Area 27゚C 40゚C 60゚C 80゚C

4-2-5a 萃取溫度探討

27゚C 40゚C 60゚C 80゚C

extraction temperature

RSD TEGDMA

UDMA Bis-GMA

4-2-5b 不同萃取溫度下之 RSD 值

4-2-6 附圖

Area 0 rpm 200rpm 500rpm 800rpm

4-2-6a 攪拌速度探討

0 rpm 200rpm 500rpm 800rpm

stirring rates

RSD TEGDMA

UDMA Bis-GMA

4-2-6b 不同攪拌速度下之 RSD 值

4-2-7 附圖

RSD TEGDMA UDMA Bis-GMA

4-2-7b 不同 pH 值下之 RSD 值

4-5-1 附圖

Dyract

TEGDMA UDMA Bis-GMA 分析物種

釋出率 Tetric Ceram

4-5-2 附圖

4-5-2a 標準溶液 TEGDMA LC-MS-MS 質譜圖

4-5-2b 樹脂浸泡液 TEGDMA LC-MS-MS 質譜圖

4-5-2c 標準溶液 UDMA LC-MS-MS 質譜圖

4-5-2d 樹脂浸泡液 UDMA LC-MS-MS 質譜圖

4-5-2e 標準溶液 Bis-GMA LC-MS-MS 質譜圖

4-5-2f 樹脂浸泡液 Bis-GMA LC-MS-MS 質譜圖

4-5-3 附圖

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03

20s 40s 60s 80s 120s

polymeric time(second)

releasing cofficient TEGDMA

UDMA Bis-GMA

4-5-3 聚合時間影響溶出量探討

4-5-4 附圖

0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 5.00E-03

0°C 27°C 40°C

releasing cofficient TEGDMA

UDMA Bis-GMA

4-5-4 溫度影響溶出量探討

4-5-5 附圖

0.0000E+00 5.0000E-04 1.0000E-03 1.5000E-03 2.0000E-03 2.5000E-03 3.0000E-03

3 5 7.65 9 11 pH

releasing cofficient TEGDMA

UDMA Bis-GMA

4-5-5 pH 影響溶出量探討

表4-2-2 SPME 吸附時間探討

TEGDMA 5 min 10 min 15 min 20 min 25 min Mean(n=3) 99475 160078 246524 323524 303957

SD 3955 7200 9442 18941 4222 RSD % 3.98 4.5 3.83 5.85 1.39

UDMA 5 min 10 min 15 min 20 min 25 min Mean(n=3) 48318 73571 122213 146717 133656

SD 4124 4929 10959 5602 7295 RSD % 8.54 6.70 8.97 3.82 5.46

Bis-GMA 5 min 10 min 15 min 20 min 25 min Mean(n=3) 55638 72817 114118 166653 161526

SD 1640 5277 4192 19642 9412 RSD % 2.95 7.25 3.67 11.79 5.83

表4-2-3 SPME 脫附劑探討

TEGDMA 移動相 100%乙腈 100%乙醇

Mean(n=3) 205385 318983 186930 SD 10433 8850 21890

RSD % 5.08 2.77 11.71

UDMA 移動相 100%乙腈 100%乙醇

Mean(n=3) 113804 175283 184703

SD 6977 12142 3110

RSD % 6.13 6.93 1.68

Bis-GMA 移動相 100%乙腈 100%乙醇

Mean(n=3) 101370 211575 171428 SD 5328 9070 8127

RSD % 5.26 4.29 4.74

表 4-2-4 SPME 脫附時間探討

TEGDMA 5 min 10 min 15 min 20 min Mean(n=3) 302791 309000 290745 246443

SD 37159 35494 11714 19932 RSD % 12.27 11.49 4.03 8.09

UDMA 5 min 10 min 15 min 20 min Mean(n=3) 157434 156415 142622 116176

SD 24354 22800 4818 4523

RSD % 15.47 14.58 3.38 3.89

Bis-GMA 5 min 10 min 15 min 20 min Mean(n=3) 189148 179904 164015 118118

SD 40950 38826 3839 8417

RSD % 21.65 21.58 2.34 7.13

表4-2-5 SPME 萃取溫度探討

TEGDMA 室溫 40 ℃ 60 ℃ 80 ℃

Mean(n=3) 223862 392585 354773 220148

SD 10733 21736 27187 14827

RSD % 4.79 5.54 7.66 6.74

UDMA 室溫 40 ℃ 60 ℃ 80 ℃

Mean(n=3) 96012 197917 293797 232941

SD 2051 15895 43582 12816

RSD % 2.14 8.03 14.83 5.5

Bis-GMA 室溫 40 ℃ 60 ℃ 80 ℃

Mean(n=3) 85971 212033 410898 339617

SD 3789 16704 45694 61921

RSD % 4.41 7.88 11.12 18.23

表 4-2-6 SPME 攪拌與否探討

TEGDMA 0 rpm 200 rpm 500 rpm 800 rpm Mean(n=3) 392585 405155 379214 390087

SD 21736 26262 26198 12419

RSD % 5.54 6.48 6.12 3.18

UDMA 0 rpm 200 rpm 500 rpm 800 rpm Mean(n=3) 197917 326357 347107 367083

SD 15895 21875 24785 25352

RSD % 8.03 6.70 7.14 6.91

Bis-GMA 0 rpm 200 rpm 500 rpm 800 rpm Mean(n=3) 212033 479050 683296 686788

SD 16704 17949 124762 183289

RSD % 7.88 3.75 18.26 26.69

表4-2-7 SPME pH 值探討

TEGDMA pH=3 pH=5 pH=7.65 pH=9 pH=11 Mean(n=3) 370981 380269 409351 322054 15071

SD 3741 6024 12898 22073 9748

RSD % 1.01 1.58 3.15 6.85 64.68

UDMA pH=3 pH=5 pH=7.65 pH=9 pH=11 Mean(n=3) 412066 422483 444910 311157 25108

SD 10950 29591 26294 14256 24720

RSD % 2.66 7.00 5.91 4.58 98.45

Bis-GMA pH=3 pH=5 pH=7.65 pH=9 pH=11 Mean(n=3) 545428 551334 637811 390864 42274

SD 37234 53189 10456 26930 21404

RSD % 6.83 9.65 1.64 6.89 50.63

表4-3 分配係數

4-3c UDMA 低濃度分配係數

4-3e Bis-GMA 低濃度分配係數

表4-4-1 檢量線製作

4-4-1a TEGDMA

濃度(µg/mL) 方程式 R2 RPD %

0.3~30 Y=48429X+1411.8 1 -9.45~1.03 0.3~30 Y=47562X+118.1 0.999 -11.52~4.30 異日

0.3~30 Y=47671X-638.31 0.999 -10.56~4.17

4-4-1b UDMA

濃度(µg/mL) 方程式 R2 RPD %

0.5~50 Y=33421X+1584.8 0.999 -9.42~2.55 0.5~50 Y=35291X+3161.8 1 -1.73~4.16 異日

0.5~50 Y=34248X+3021.9 0.999 -7.8~7.45

4-4-1c Bis-GMA

濃度(µg/mL) 方程式 R2 RPD %

0.5~50 Y=68195X-429.92 0.999 -5.12~4.85 0.5~50 Y=68226X-2274.3 0.999 -5.23~10.29 異日

0.5~50 Y=68358X-1497.5 0.999 -9.35~3.42

表 4-4-2 方法偵測極限

4-4-2c Bis-GMA

編號 配製濃度 (µg/mL) 分析濃度(µg/mL)

1 0.5 0.48

2 0.5 0.50

3 0.5 0.50

4 0.5 0.50

5 0.5 0.55

6 0.5 0.51

7 0.5 0.52

SD=0.021 3*SD=0.064 MDL =0.064 µg/mL

表 4-4-3 準確度與精密度測試

4-4-3c UDMA 低濃度精密度與準確度

4-4-3e Bis-GMA 低濃度精密度與準確度

表4-5-3 聚合時間對溶出量影響 4-5-3a TEGDMA

聚合時間 20s 40s 60s 80s 120s

Mean(n=2) 118670 81272 64880 60206 43507

SD 936 1828 919 492 597

RSD % 0.79 2.25 1.42 0.82 1.37

濃度 μg/mL 14.52 9.82 7.76 7.17 5.07 聚合重量(ng) 78400 77600 79300 76300 69400

溶出量(ng) 58.07 39.27 31.03 28.68 20.29 溶出率×1000 0.74 0.50 0.39 0.37 0.29

4-5-3b UDMA

聚合時間 20s 40s 60s 80s 120s

Mean(n=2) 319135 224483.5 183412.5 165830 140829.5 SD 13.44 999.14 1093.89 4405.28 813.88 RSD % 0.00 0.45 0.60 2.66 0.58 濃度μg/mL 67.09 47.08 38.40 34.68 29.39 聚合重量(ng) 78400 77600 79300 76300 69400

溶出量(ng) 268.37 188.32 153.58 138.71 117.57 溶出率×1000 3.42 2.42 1.94 1.84 1.70

4-5-3c Bis-GMA

聚合時間 20s 40s 60s 80s 120s

Mean(n=2) 477147.5 332901.5 270895.5 249087.5 210272.5 SD 368.40 2123.44 4509.22 7374.42 1024.60 RSD % 0.08 0.64 1.66 2.96 0.49 濃度μg/mL 90.82 63.34 51.53 47.38 39.98 聚合重量(ng) 78400 77600 79300 76300 69400

溶出量(ng) 363.27 253.36 206.12 189.50 159.93 溶出率×1000 4.63 3.26 2.60 2.48 2.30

表4-5-4 溫度對溶出量影響 4-5-4a TEGDMA

溫度 0°C 室溫(27°C) 40°C

Mean(n=2) 64625.67 63781.67 63670.67 SD 2330.80 2010.35 2089.45 RSD % 3.61 3.15 3.28 濃度μg/mL 7.73 7.62 7.61 聚合重量(ng) 77600 72100 67200

溶出量(ng) 30.90 30.48 30.42 溶出率×1000 0.39 0.42 0.45

4-5-4b UDMA

溫度 0°C 室溫(27°C) 40°C

Mean(n=2) 144604 180781.7 230396 SD 2185.00 4621.92 5792.68 RSD % 1.51 2.56 2.51 濃度μg/mL 30.19 37.84 48.33 聚合重量(ng) 77600 72100 67200

溶出量(ng) 120.7601 151.3582 193.3207 溶出率×1000 1.56 2.10 2.88

4-5-4c Bis-GMA

溫度 0°C 室溫(27°C) 40°C

Mean(n=2) 209056.7 267433.7 328958.3 SD 880.70 6791.13 8703.42 RSD % 0.42 2.54 2.65 濃度μg/mL 39.75 50.87 62.59 聚合重量(ng) 77600 72100 67200

溶出量(ng) 159.00 203.48 250.36 溶出率×1000 2.05 2.82 3.73

表4-5-5 pH 值對溶出量影響 4-5-5a TEGDMA

pH 值 3 5 7.65 9 11

Mean(n=2) 69544 68588 60206 155873 34005 SD 1202.08 4682.4 492.15 6713.27 2291.03 RSD % 1.73 6.83 0.82 4.31 6.74 濃度 μg/mL 8.34 8.22 7.17 19.19 3.88 聚合重量(ng) 77100 84800 76300 81500 79600 溶出量(ng) 33.38 32.90 28.68 76.77 15.51 溶出率×1000 0.43 0.38 0.37 0.94 0.19

4-5-5b UDMA

pH 值 3 5 7.65 9 11

Mean(n=2) 193370.5 198073 165830 0 0 SD 3334.01 895.20 4405.28 0 0 RSD % 1.72 0.45 2.66 0 0 濃度μg/mL 40.50 41.50 34.68 0 0 聚合重量(ng) 77100 84800 76300 81500 79600 溶出量(ng) 162.01 165.98 138.71 0 0

溶出率×1000 2.10 1.95 1.81 0 0

4-5-5c Bis-GMA

pH 值 3 5 7.65 9 11

Mean(n=2) 282171 292339.5 249087.5 0 0 SD 3420.98 195.87 7374.42 0 0 RSD % 1.21 0.07 2.96 0 0 濃度μg/mL 53.68 55.61 47.38 0 0 聚合重量(ng) 77100 84800 76300 81500 79600 溶出量(ng) 214.7087 222.4566 189.5008 0 0

溶出率×1000 2.78 2.62 2.48 0 0

第伍章 結論與建議

本 次 研 究 針 對 光 聚 複 合 式 樹 脂 聚 合 不 完 全 溶 出 , 其 溶 出 物 TEGDMA、UDMA、Bis-GMA 擬開發一個以直接固相微萃取結合液相

層析儀的分析方法來評估其溶出量,同時探討聚合時間、溫度與 pH 值

對樹脂溶出量的影響。總結本次研究結論及建議如下:

(一) 結論與建議:

1. 本研究所開發之直接固相微萃取法,在單因素考量下,為將標準品添 加於未經pH 值調整唾液溶液中,裝滿 4 mL vial,瓶中加入攪拌磁石,

密封後於40°C 下、轉速 200 rpm 下,以 60 μmPDMS/DVB 纖維直接 吸附20 分鐘,再以移動相( 65 %乙腈、35 %D.I.水)靜態脫附 15 分 鐘 , 配 合 適 當 之 儀 器 參 數 , 在 此 分 析 條 件 探 討 下 , 可 得 一 最 適 Direct-SPME-HPLC 分析方法,而套用以上 SPME 參數探討分配係 數,高低濃度的分配係數皆穩定。

2. 檢量線範圍為 TEGDMA:0.3~30 µg/mL;UDMA:0.5~50 µg/mL;

Bis-GMA: 0.5~50;分析方法其方法偵測極限分別為 TEGDMA:0.035 µg/mL;UDMA:0.276 µg/mL;Bis-GMA:0.064 µg/mL 並且其精密 度無論在低濃度或高濃度CV 值皆在 10 %以內,且準確度皆介於 100±10 %之間,分析方法之再現性良好。

3. 樹脂溶出物在口腔環境中會被分解,而唾液樣本皆無偵測到分析物,

可知酵素分解速度較釋出速度快,進入人體循環系統大部份為分解後 產物,應對釋出物的分解產物作一健康評估。

4. 聚合時間、溫度與 pH 值皆會影響樹脂溶出,聚合時間影響是最顯著 的,增加聚合時間可降低其溶出量;隨著溫度增加UDMA、Bis-GMA 溶出量增加;隨著 pH 減少,三種物質溶出量隨著增加。

建議在樹脂填補完的第一周,以漱口來降低口腔溫度,沖淡口腔酸 性環境,盡量少吃過熱及偏酸的食物,以減少溶出量。

(二) 未來發展

1. 已知唾液酶會與樹脂溶出物產生水解反應,但不同酶對不同物質的 分解機制是未知的,由實驗得知,樹脂於唾液中的溶出物全部被酶 分解,針對特定溶出物,探討其分解機制及產物量的變化,有助於 更了解樹脂溶出的健康危害。

2. 以往對於樹脂溶出的培養皆在固定量的溶液中做培養,以模擬真實 口腔之暴露腔來評估其溶出總量,對健康評估才是最準確的。

參考文獻

1. Phoenix RD. Denture base materials. Dental Clinics of North America 1996; 40: 113-120.

2. Jagger DC, Harrison A and Mazoug K. Effect of the addition of poly (methyl methacrylate) beads on some properties of acrylic resin. Internation Journal of Prosthodont 2000; 13: 378-382.

3. Peutzfeldt A. Resin composite in dentistry: the monomer systerm.

European Journal of Oral Sciences 1997; 97-116.

4. Mjor IA, Moorehead JE, and Dahl JE. Selection of restorative materials in permanent teeth in general dental practice. Acta Odontol Scand 1999; 57:

257-262.

5. Ferracane JL. Elution of leachable components from composites.

Journal of Oral Rehabilitation 1994; 21: 441-446.

6. Michelsen VB, Lygre H, Skalevik R and Treit AB. Identification of

organic eluates from four polymer-based dental filling materials. European Journal of Oral Sciences 2003; 111: 263-271.

7. Asmussen E. Factors affecting the guantity of remaining doude bonds in restorative resin polymers. Scandinavian Journal of Dental Research 1982;

90: 490-496.

8. Ruyter IE and Svendsen SA. Remainimg methacrylate groups in composite restorative materials. Acta Odontol Scand 1978; 36: 75-82.

9. Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res 1982; 90: 490-496.

10. Ferracane JL and Greener EH. Fourier transform infrared analysis of degree of polymerization in unfilled resins-methods comparison. J Dent Res

1984; 63: 1093-1095.

11. Geurtzen W. Substances release from dental resin composites and glass ionomer coments. European Journal of Oral Sciences 1998; 106: 687-692.

12. Norbert HK. Genotoxicity and Cytoxicity of drntal materials in human lymphocytes as assessed by the single cell microgel electrophoresis (comet) assay. Journal of Dentistry 2004; 32: 229-234.

13. Henriks-Eckerman ML, Suuronen K, Jolanki R, and Alanko K.

Methacrylates in dental restoratives materials.Contact Dermatitis 2004;50:233-237.

14. Abdul H, Wyatt RH. A study of component releasr from resin pit and fissure sealants in vitro. Dent Mater 1997; 13: 98-102

15. Santerre JP, Jaffer F and Finer Y. Interactions between resin monomers and commercial composite resins with human saliva deriver esterases.

Biomater 2002; 23: 1707-1719

16. Tanaka K, Taira M, Shintani H, Wakasa k and Yamaki M. Residual monomers(TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. Journal of Oral Rehabilitation 1991; 18: 352-362.

17. Santerre JP, Shajii L and Tsang H. Biodegradation of commercial dental composites by cholesterol esterase. Journal of Dental Research 1999; 78:

1459-1468.

18. Wendt SL, Werner A, and Davidson CL. Influence of enzymes and plaque acids on in vitro wear of dental composites. Biomaterials 1996; 17:

1327-1332.

19. Janr CA. Stability of bisphenol A, trithylene-glycol dimethacrylate and bisphenol A dimethacrylate in whole saliva. Dental Materials 2002; 18:

128-135.

20. Vahidi F. The provisional restoration. Dent Clin North Am 1987;31:

363-381.

21. Ireland MF, Dixon DL, Breeding LC and Ramp MH. In vitro

mechanical property comparison of four resins used for fabrication of provisional fixed restorations. J Prosthet Dent 1998; 80: 152-162.

22. Emtiaz S and Tarnow DP. Processed acrylic resin provisional

restoration with lingual cast metal framework. J Prosthet Dent 1998; 79:

484-488.

23. Asmussen E and Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites.Dental Materials1998; 14(1):51-56.

24 . 吳育霖. 陳瑞松: 複合樹脂以相同能量密度聚合所得之物理特性 研究。碩士論文 2002

25. Wang X, Powers JM and Connelly ME. Color stability of heat-activated and chemically activated fluid resin acrylics. J Prosthodont 1996; 5:

266-269.

26. Yannikakis SA, Zissis AJ, Polyzois GL and Caroni C. Color stability of provisional resin restorative materials. J Prosthet Dent 1998; 80: 533-539.

27. Wang RL, Moor BK, Goodacre CJ, Swartz ML and Andress CJ. A comparison of resins for fabricating provisional fixed restorations. Int J Prosthodont 1989; 2: 173-184.

28. Sulong MZ and Aziz RA. Wear of materials used in dentistry: a review of the literature. J Prosthet Dent 1990; 63: 342-349.

29. Huang FM and Tai KW. Cytotoxic evaluation of various types of

denture base resins. The 23rd Asia Pacific Dental Congress 2001 DM-03.

30. Huang FM and Hu CC. Residual monomer releasing from acrylic denture base in water. Chin Dent 2000; 19: 17-22.

31. Ruyter IE and Oysaed H. Conversion in denture base polymers. J Biomed Mater Res 1982; 16: 741-754.

32. Saillenfait AM, Bonnet P, Gallissot F, Peltier A and Fabries JF.

Developmental toxicities of methacrylic acid , ethyl methacrylate, n-butyl methacrylate and alyl methacrylate in rats following inhalation exposure.

Toxicological Sciences 1999; 50: 136-145.

33. Geurtsen W. Biocompatibility of resin-modified filling materials.

34. Lefebvre CA, Schuster GS, Richardson DW and Barron DJ. The

cytotoxic effects of denture base resin sealants. Int J Prosthodont 1992; 5:

558-562.

35. Tang AT, Li J, Ekstrand J and Liu Y. Cytotoxicity tests of in

situ polymerized resins: methodological comparisons and introduction of a tissu culture insert as a testing device. J Biomed Mater Res1999; 45:

214-220.

36. Cimpan MR, Cressey LI, Skaug N, Halstensen A, Lie SA, Gjertsen BT and Matre R. Patterns of cell death induced by eluates from denture base acrylic resins in U-937 human monoblastoid cells. Eur J Oral Sci 2000; 108:

59-69.

37. Ratanasathien S, Wataha JC, Hanks CT and Dennison JB. Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 1995; 74: 1602-1606.

38. Terakado M, Yamazaki M, Tsujimoto Y, Kawashima T, Nagashima K and Ogawa J. Lipid peroxidation as a possible cause of benzoyl peroxide

toxicity in rabbit dental pulp-a microsomal lipid peroxidation in vitro. J Dent Res 1984; 63: 901-905

39. Birk LI and Munksgaard EG. Effect of human saliva on surface degradation of composite resins. Scand J Dent Res 1991; 99: 254-261 40. Jane CA, Francis D, Frederick E, Robert S and Gordon J. Stability of bisphenol A, triethylene-glycol dimethacrylate, and bisphenol A dimethacrylate in whole saliva. Dent Mater 2002; 18: 128-135

41. 黃敬德.謝有容:固相微萃取法。科儀新知 1997; 18(4): 59-67.

42. 黃敬德.謝有容:固相微萃取技術之原理及其應用。Chemistry(The Chinese Chem.Soc.,Taipei) 1998; 56(4): 311-318.

43. 李德仁:固相微萃取樣本前處理技術應用於揮發性或半揮發性有機 物質之GC 分析。科儀新知 1998 ;19(6): 16-25.

44. Ulrich S. Solid-phase microextraction in biomedical analysis. Journal of Chromatography A 2000; 902: 167-194.

45. Pawliszyn J. Solid Phase Microextraction: Theory and Practice. 1997 46. Supelco, SPME application Guide.1999.

47. Supelco:2000 Chromatography Products for Analysis and Purification.

Bellefonte, PA: Sigma-Aldrich Co., 2000.

48. Carlo G. Coupling solid-phase microextraction to liquid chromatography.

Anal Bioanal Chem 2003; 375: 73-80.

49. Supelco. Solid phase microextratuon theory and optimization of conditions. Bellefonte, PA: Sigma-Aldrich Co., 1998.

50. Lee MR, Yeh YC, Hsiang WS and Chen CC. Application of solid-phase microextraction and gas chromatography-mass spectrometry for the

determination of chlorophenols in urine. Journal of Chromatography B 1998;

707: 91-97.

51. Centini F, Masti A and Comparini B. Quantitative and qualitative analysis of MDMA, MDEA, MA and amphetamine in urine by head-space/solid phase micro-extration (SPME) and GC/MS. Forensic Science International 1996; 83: 161-166.

52. Snow NH. Solid-phase micro-extration of drugs from biological matrices (Review). Journal of Chromatography A 2000; 885: 445-455.

53. Ortengren U, Langer S, Goransson A and Lundgren T. Influence of pH and time on organic substance release from a model dental composite: a florescence spectrophotometry and gas chromatography/mass spectrometry analysis. European Journal of Oral Sciences 2004; 112: 530-537

54. Robert E, Shirey and Raymond F. A systematic approach for selecting the appropriate SPME fiber. SUPELCO, SUPELCO park, Bellefonte PA 16823.

相關文件