• 沒有找到結果。

第六章 結論與預期效益

6.2 預期效益及評估指標

燃料電池車輛及電力設備,屬於低污染及高效率之動力設備。如使用純氫為燃料,

其產物為純水,故其污染為零,若使用傳統燃料如甲醇、乙醇、天然氣、LPG、汽油或 柴油等傳統燃料,根據美國能源部(DOE)研究發現其 CO、HC、NOX等有害物質生成量 幾乎可以忽略,而美國能源部的 National Energy Technology Laboratory 研究亦發現 CO2

生成量比傳統內燃機引擎(ICE)少 40~60%的污染量。若以 DaimlerChrysler 預估,使用 燃料電池之環保車輛到公元 2020 年將佔全球車輛總數之 25%,我國機車超過千萬量,

汽車亦超過五百萬量,依此數量推算,不難瞭解其對空氣污染減量的重大影響。

目前業界對燃料電池的發展進行的如火如荼,待達到大量生產規模時,燃料電池 的價格必定大幅滑落,由於效率和環保的優勢,其應用範圍無限。

近日在海牙舉行的聯合國氣候會議希望能就對抗全球暖化現象,達成削減溫室氣 體排放量的共識,而國內則希望尋找對環境較無衝擊的發電方法及運輸工具,此種無/

低污染能源,對未來市區車輛污染之減量及能源多元化必有重大助益,我國相關部門應 及早因應,並推廣此領域之開發與研究。

參考文獻

1. “Carbon/Carbon Composite Bipolar Plate for PEMFC,” Theodore M. Besmann, James W. Klett, John J. Henry, Jr., and Edgar Lara-Curzio, Journal of The Electrochemical Society, 147(11), 4083-4086, 2000.

2. “Analyses of Self-humidification and Suppression of Gas Crossover in Pt-dispersed Polymer Electrolyte Membranes for Fuel Cells,” Watanabe M, Uchida H, and Emori M, Journal of The Electrochemical Society, 145(4), 1137, 1998.

3. “Electro osmotic Drag of Water in Poly(perfluorosulfonic acid) Membranes,” Xiaoming Ren, and Shimshon Gottesfeld, Journal of The Electrochemical Society, 148(1), A87-A93, 2001.

4. “Diffusion of Water in Nafion 115 Membranes,”Sathya Motupally, Aaron J. Becker, and John W. Weidner, Journal of The Electrochemical Society, 147(9),3171-3177, 2000.

5. “A study of the Internal Humidification of an Integrated PEMFC Stack,” K.H.Choi, D.J.

Park, Y.W. Rho, Y.T. Kho, T.H. Lee, Journal of Power Sources, 74, 1, 146-150, 1998.

6. “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cell,”

Rongzhong Jiang, and Deryn Chu, Journal of Power Sources, 93, 25-31, 2001.

7. “Development of a 1kW Polymer Electrolytefuel Cell Power Source,” T. Susai, A.

Kawakami, A. Hamada, Y. Miyake, and Y. Azegami, Journal of Power Sources, 92, 131-138, 2001.

8. “40W PEMFC System For Laptop Computer Operation in Non-Humidifief Hydrogen and Air,” C. Lim, A. Koschany, and H. Chang, Fuel cell 2000, 803-806, 2000.

9. “Development of a 250KW Class Polymer Electrolyte Fuel Cell Stack,” Kirk Washington, and Ballard Power System, Fuel cell 2000, 468-472, 2000.

10. "New materials for polymer electrolyte membrane fuel cell current collectors", Philip L. Hentall, J. Barry Lakeman, Gary O. Mesped, Paul L. Adcock, Jon M.

Moor, J. Power Sources, Vol. 80, pp.235-241, 1999.

Kawakami, A. Hamada, Y. Miyake, and Y. Azegami, Journal of Power Sources, 92, 131-138, 2001.

12. "Recent Advances in Fuel Cells for Transportation Applications", Ken Dircks, Ballard Automotive Inc., Proceedings of the 15th Electrical Vehicle System, Brussel, Belgium, September, 1998.

13. “Electro osmotic Drag of Water in Poly(perfluorosulfonic acid) Membranes,” Xiaoming Ren, and Shimshon Gottesfeld, Journal of The Electrochemical Society, 148(1), A87-A93, 2001

14. “Diffusion of Water in Nafion 115 Membranes” Sathya Motupally, Aaron J. Becker, and John W. Weidner, Journal of The Electrochemical Society, 147(9),3171-3177, 2000 15. "Volumic electrodes of fuel cells with polymer electrolyte membranes :

electrochemical performances and structural analysis by thermoporometry", S.

Escribano, P. Aldebert and M. Pineri, Electrochimica Acta . Vol. 43 Nos. 14-15.

pp2195-2202. 1998.

16. "Thin-film catalyst layers for polymer electrolyte fuel cell electrodes" , M. S, Wilson, and S. Gottesfeld, Journal of Applied Electrochemistry Vol.22 (1992).

17. "Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologic characteristics of electrodes", E. A. Ticianelli, J. G.

Beery , Supramaniam Srinivasan Journal of Applied Electrochemistry 21 (1991) 597-605.

18. "Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells" , V. A. Pagsnin, E. A. Ticianelli , E. R. Gonzalez, Journal of Applied Electrochemistry, 26 (1996), 297-304.

19. "Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells", A. Fischer, J. Jindra, and H. Wendt, Journal of Applied Electrochemistry, 28 (1998), 277-282.

20. "Modeling of Proton Exchange Membrane Fuel Cell Performance with Empirical Equation", ,Junbom Kim, Seong-Min Lee and Supramaniam Srinivasan, Journal of The Electrochemical Society . Vol. 142, No. 8, August 1995.

21. "Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes", Young-Gab Chun, Chang-Soo Kim, Dong-Hyun Peck, Dong-Ryul Shin, Joural of Power source, 71 (1998),174-178.

22. "Electrochemical behaviour of a hydrogen/oxygen gas mixture at a solid polymer electrolyte," S-Y. Cha, J-M. Song and W-M. Lee, Journal of Applied Electrochemistry, 28 (1998), 1413-1418.

23. "Performance of Porton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane surface," S. Y. Cha and W.

M. Lee, Journal of The Electrochemical Society, 146 (11), 4055-4060 (1999).

24. “Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes,” S. Srinivasan, E. A. Ticianelli, C. R. Derouin amd A. Redondo, Journal of Power Source , 22 (1998) 359-375.

25. "Comparative studies of polymer electrolyte membrane fuel cell stack and single cell", Deryn Chu, Rongzhong Jiang, J. Power Sources, Vol. 80, pp.226-234, 1999.

26. “Membrane fuel cell – concepts and system design,” A. Heinzel, R. Nolte, K.

Ledjeff-Hey, and M. Zedda, Electrochimica Acta, Vol.43, No.24, pp.3817-3820, 1998 27. “Stack design and performance of polymer electrolyte membrane fuel cell,” Rongzhong

Jiang, and Deryn Chu, Journal of Power Sources, 93, 25-31, 2001

28. “Development Of A 250KW Class Polymer Electrolyte Fuel Cell Stack,” Kirk Washington, and Ballard Power System, Fuel cell 2000, 468-472, 2000.

29. “Performances Of A PEMFC Stack For Stationary Application,” J. Hamelin, K.

Agbossou, A. Laperriere, F. Laurencelle, and T. K. Bose, Fuel cell 2000, 448-451, 2000.

30. “Design And Performance Of PEMFC Power System For The Remote Area Power Project,” Charles E. Chamberlin, Peter A. Lehman, Ronald Reid, David S. Rommel, Fuel cell 2000, 360-363, 2000.

31. “Iridium Oxide Platinum Electrrrocatalysts for Unitized Regenerative Polymer Electrolyte Fuel Cells,” Tsutomu Ioroi, Naohisa Kitazawa, Kazuda, Yoshifumi Yamamoto, and Hiroyasu Takenaka, Journal of The Electrochemical Society, 147(6),

2018-2022, 2000.

32. “Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell”, S.

Miachon, and P. Aldebert, Journal of Power Source, 56, 31-36, 1995.

33. "Low-cost Light Weight High Power Density PEM Fuel Cell Stack", O. J. Murphy, A. Cisar, and E. Clarke, Electrochimica Acta., Vol. 43, No. 24, pp. 3829-3840, 1998.

34. "Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes", C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan, and A. J.

Appleby, Electrochimica Acta., Vol. 43, No. 24, pp. 3703-3709, 1998.

35. "A study of the internal humidification of an integrated PEMFC stack", K.H. Choi, D.J. Park, Y.W. Rho, Y.T. Kho, T.H. Lee, Journal of Power Sources, Vol. 74, No. 1, pp. 146-150, 1998.

36. "Membrane fuel cell-concepts and system design", A. Heinzel, R. Nolye, K.

Lledjeff-Hey and M. Zedda, Electrochimica Acta., Vol. 43, No. 24, pp. 3817-3820, 1998.

37. "Development of small polymer electrolyte fuel cell stacks", V. A. Paganin, E. A.

Ticianelli, E. R. Gonzalez, J. Power Sources, Vol. 70, pp.55-58, 1998.

38. "Efficiency and economics of proton exchange membrane (PEM) fuel cells", F.Barbir, and T. Gomez, Energy Partners,1996.

39. “Water and Methanol Uptakes in Nafion Membrane Effect on Direct Methanol Cell Performance,” X. Ren, T.E. Springer, and S. Gottesfeld, Journal of The Electrochemical Society, 147(1), 92-98, 2000

40. “40W PEMFC System For Laptop Computer Operation in Non-Humidifief Hydrogen and Air,” C. Lim, A. Koschany, and H. Chang, Fuel cell 2000, 803-806, 2000.

41. “直接甲醇燃料電池中的甲醇電催化氧化,”馬紫峰,冷擁軍,蔣淇忠,化學通報 C99123,88 年 5 月。

42. “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,”

D.M. Bernardi, M.W. Verbrugge, AIChE Journal, Vol.37, No.8, pp.1151-1163, 1991.

43. "A Water and Heat Management Model for Proton Exchange Membrane Fuel Cells," T.V.

Nguyen, R.E. White, Journal of the Electrochemical Society, Vol.140, No.8,

pp.2178-2186, 1993.

44. "A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells, " T.V. Nguyen, Journal of the Electrochemical Society, Vol.143, No.5, pp.L103-L105, 1996.

45. "Modeling the PEM Fuel Cell Cathode," K. Broka, P. Ekdunge, Journal of Applied Electrochemistry, Vol.27, No.3, pp.281-289, 1997.

46. "Modeling of Polymer Electrolyte Membrane Fuel Cells with Variable Degrees of Water Flooding," J.J. Baschuk, X. Li, Journal of Power Sources, Vol.86, pp.181-196, 2000.

47. "Mathematical Model of the PEMFC," K. Dannenberg, P. Ekdunge, G. Lindbergh, Journal of Applied Electrochemistry, Vol.30, pp.1377-1387, 2000.

48. "A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells," D. Singh, D.M. Lu, N. Djilali, International Journal of Engineering Science, Vol.37, pp.431-452, 1999.

49. "Mathematical Modeling of Proton-Exchange-Membrane Fuel Cell Stacks", D.

Thirumalai and R. White, J. Electrochem. Soc., Vol. 144, No. 5, May 1997.6.

"Volumic electrodes of fuel cells with polymer electrolyte membranes : electrochemical performances and structural analysis by thermoporometry", S.

Escribano, P.Aldebert and M. Pineri, Electrochimica Acta . Vol. 43 Nos. 14-15.

pp2195-2202. 1998.

50. 質子交換膜燃料電池水傳遞模型,葛善海,衣寶廉,徐洪峰,Journal of Chemical Industry and Engineering,第五十卷,第一期,1999 年。

51. 直接甲醇燃料電池之性能模擬,劉子豪,鄭錕燦,大葉大學論文,90 年 6 月。

52. Long-Jeng Chen, Ming-San Lee, and Xuan-Ren Zhou, “The Theoretical Modeling and Analysis of MEA of a PEMFC,” The 26th Conference On Theoretical And Applied Mechanics, R.O.C., December 2002, A026.

53. "Performance and lifetime analysis of the kW-class PEMFC stack," S. Y. Ahn, S. J. Shin, H. Y. Ha, S. A. Hong, Y. C. Lee, T. W. Lim, I. H. Oh, Journal of Power Sources, 106 , 295-303, 2002.

54. "Development of 1 kW class polymer electrolyte membrane fuel cell power generation system," H. I. Lee, C. H. Lee, T. Y. Oh, S. G. Choi, I. W. Park, K. K. Baek, Journal of Power Sources, 107, 110-119, 2002.

55. "PEM fuel cell stacks operated under dry-reactant conditions," Zhigang Qi, Arthur

Kaufman, Journal of Power Sources, 109, 469-476, 2002.

56. "The influence of carbon dioxide on PEM fuel cell anodes," F. A. de Bruijn, D. C.

Papageorgopoulos, E. F. Sitters, G. J. M. Janssen, Journal of Power Sources, 110, 117-124, 2002.

57. "Activation of low temperature PEM fuel cells," Zhigang Qi, Arthur Kaufman, Journal of Power Sources, 111, 181-184, 2002.

58. "Metallic bipolar plates for PEM fuel cells," J. Wind, R. späh, W. Kaiser, G. Böhm, Journal of Power Sources, 105, 256-260, 2002.

59. "Stack design and performance of polymer electrolyte membrane fuel cell," Rongzhong Jiang, and Deryn Chu, Journal of Power Sources, 93, 25-31, 2001.

60. "Development of a 1kW polymer electrolytefuel cell power source," T. Susai, A.

Kawakami, A. Hamada, Y. Miyake, and Y. Azegami, Journal of Power Sources, 92, 131-138, 2001.

61. "40W PEMFC System For Laptop Computer Operation in Non Humidifief Hydrogen and Air," C. Lim, A. Koschany, and H. Chang, Fuel cell 2000, 803-806, 2000.

62. "Effect of collector plate resistance on fuel cell stack," F. Barbir, J. Braun, and J.

Neutzler, Energy Partner, 1999.

63. "Membrane fuel cell – concepts and system design," A. Heinzel, R. Nolte, K.

Ledjeff-Hey, and M. Zedda, Electrochimica Acta, Vol.43, No.24, 3817-3820, 1998.

64. "Development of small polymer electrolyte fuel cell stacks," V. A. Paganin, E. A.

Ticianelli, E. R. Gonzalez, J. Power Sources, Vol. 70, 55-58, 1998.

Pt/C

3.1 PEMFC

單電池構造原理圖

反應氣體入口

MEA

反應氣體出口

石墨集電板

螺栓孔

反應氣體出口 反應氣體入口

流道 0.5mm 密封用膠板

3.2

單電池組合圖

Unipolar plate

Bipolar plate

MEA Seal plate

Unipolar plate

圖3.3 燃料電池組解剖示意圖

C F2

C F2 C

F2 F C O

CF2 CFCF3

O

F2C C F2

SO3H k

n

3.4 Nafion

分子式

3.5 Sulphonate

基團的大小會隨著

交換膜的含水量減少而變小。

Laod

Cell Potential(V) 1

0

Current density B

A C

3.7

電壓—電流密度特性圖。

Ideal Voltage 1.23 V

P 壓力控制閥與洩壓閥

(a)

(b)

4.2

性能測試系統照片

4.3

氫氣隔水加熱設備

4.4

蒸汽加濕系統設備

4.5

加熱水槽溫度時間曲線

4.6

氫氣側溫控器設定溫度、保溫儲存槽內溫度與輸出到電池的

氣體溫度差距變化

4.7

加熱恆溫箱與單電池溫度時間變化曲線

4.8

蒸汽壓力控制閥設定為

1.7 kg/cm2

,蒸汽壓力與時間變化曲

60mm 23mm

1mm Branch Channel Rib 1mm

4mm

17mm Inlet

Dia. 4mm

Exit Dia. 4mm

23mm

7mm Main Channel

4.9 2.3*2.3cm2 MEA

用,燃料及氧化劑流道示意圖,流道面積比為

64%

4.10 2.3*2.3cm2 MEA

用流道照片,流道與

MEA

面積比為

64%

氫氣流道

空氣流道

4. 11 4.8*6.8 cm2 MEA

用,電池組陽極流道示意圖,流道面積比為

63%

4.12 4.8*6.8 cm2 MEA

用,電池組陰極流道示意圖,流道面積比為

57%

5

5 100

2 1.5

49

68 3

20

Unit:mm

100 66 1.5 2

Unit:mm

4.13 4.8*6.8 cm2 MEA

用流道照片,流道與

MEA

面積比:陽極

63%

, 陰極為

57%

4.14 4-cell

電池組組合後照片。

空氣流道 氫氣流道

4.15 5-cell

電池組組合測試件

(MEA 4.8 cm * 6.8 cm)

4.16 10-cell stacks

兩組

(MEA 4.8 cm * 6.8 cm)

5.1

石墨雙極板與兩電極組合後,總電阻量測示意圖。

5.2

石墨雙極板與兩電極組合後,總電阻隨結合壓力之變化。

5.3

結合扭矩的影響,

1-cell, 2-cell,

4-cell

電池組

(MEA 2.3 * 2.3 cm2)

5.4

進氣壓力的影響,

1-cell, 2-cell,

4-cell

電池組

(MEA 2.3 * 2.3cm2)

5.5

進氣壓力的影響,

1-cell, 2-cell,

4-cell

電池組

(MEA 4.8 * 6.8cm2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Current Density (A/cm2)

Voltage (V)

1st cell 2nd cell 3rd cell 4th cell Average Nafion 112

H2/O2 : Pt 0.4/ Pt1.0 (mg/cm2) Torque:80 kg-cm

H2: 2 atm with Saturated Vapor at 80℃

O2 : 2 atm

5.6 4-cell

電池組各電池之輸出電壓

(MEA: 2.3*2.3cm2)

5.7 4-cell

電池組各電池之輸出電壓,

(MEA:4.8*6.8cm2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0 0.2 0.4 0.6 0.8 1 1.2

Current Density (A/cm2)

Voltage (V)

2.3*2.3 cm2 (2atm) 2.3*2.3 cm2 (1atm)

4.8*6.8 cm2 (Fan : 2500RPM)) Nafion 112

H2/O2 : Pt 0.4/ Pt1.0 (mg/cm2) Torque:90 kg-cm

H2 2 atm with Saturated Vapor 80℃

Air : 28℃,Environment : 28℃

5.8

空氣流量的影響,

2-cell

電池組,

MEA:4.8*6.8 cm2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0 0.2 0.4 0.6 0.8 1 1.2

Current Density (A/cm2)

Voltage (V)

2.3*2.3 cm2 (2atm) 2.3*2.3 cm2 (1atm)

4.8*6.8 cm2 (Fan : 2500RPM)) Nafion 112

H2/O2 : Pt 0.4/ Pt1.0 (mg/cm2) Torque:90 kg-cm

H2 2 atm with Saturated Vapor 80℃

Air : 28℃,Environment : 28℃

5.9 2.3*2.3cm2

4.8*6.8 cm2MEA

單電池,不同空氣進氣條件下,輸出 電壓與電流密度之比較。

5.104.8*6.8 cm2 MEA

4-cell

電池組內部溫度隨著時間變化之關係。

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0 Current Density (A)

Voltage (V)

stack 1 voltage satck 2 voltage stack 1 Power stack 2 power Nafion 112

H2/Air: Pt 0.4/ Pt1.0 (mg/cm2) Torque:130 kg-cm

Pressure:2atm

5.13

電池組總電壓與功率隨電流之關係

(2

10-cell

電池組,

MEA 4.8*6.8cm2)

5.14

新型雙極板與兩電極組合後,總電阻量測示意圖。

5.15

兩種雙極板與兩電極組合後,總電阻隨結合壓力之變化。

5.16

手工試製之新型雙極板。

5.17

新型雙極板與石墨雙極板單電池,在

1.15 atm

下,性能之比較。

5.18

新型雙極板與石墨雙極板單電池,在進氣溫度

30

50

度下,性能

之比較。

1.1

各種燃料電池基本特性比較

2.1

合成碳材與傳統石墨的比較

[10]

合成碳材 傳統石墨

電子傳遞速度

200-300 S/cm 680S/cm

表面電阻係數

12.2 ± 4.2 Ω/cm 7.8 ± 2.62 Ω/cm

機械強度

175 ± 26 Mpa 86 Mpa

成本

2 US/plate 10 US/plate

密度

0.96 g/cm3 1.77 g/cm3

2.2 MK6000

規格

[28]

單電池性能

0.78V(DC)

340ASF

輸出功率

250KW

單電池作用面積

1.38ft2

(

1300cm2)

系統效率

62%

單電池數目

688

幾何外形

55.5

〞×

66

〞×

85

結構

4×172cells

系統重量

11200lb

開回路電壓

700V(DC) MAWP 75psi

2.3 SERC

電池組在

4KW

2.7KW

運轉條件下的系統效率

[30]

Parameter 4KW 2.7KW

Fuel Cell Power 4000W 2700W

Inverter Output 2950W 2060W

Goss Fuel Cell

Efficiency (HHV) 49

51

Goss Fuel Cell

Efficiency (LHV) 58

60

Net System Efficiency

(HHV) 35

38

Net System Efficiency

(LHV) 41

45

2.4 SERC

電池組各項消耗功率佔總損失功率的百分比

[30]

4KW 2.7KW Source of Loss

Watts

of Total Watts

of Total Hydrogen

Purge(HHV) 325 25

333 40

Wire and Diodes 300 24

155 19

Subsystem 256 20

168 20

Inverter 396 31

179 20

Total Parasitic

Losses 1277 100

836 100

Fraction of Gross

Output 32

31

表2.5 DMFC單電池性能研究結果比較

5.1

不同進氣壓力及負載下,

4-cell

電池組電壓及功率

(

密度

)

與電流

(

密度

)

之關係

實驗條件:

Nafion 112, MEA = 5.29 cm2; H2/O2 : Pt 0.4/Pt 1.0(mg/cm2) H2 Temp:80

,

φ

=100%; O2 Temp:24

; Stack Temp:24

Torque:80 kg-cm;

流道面積比:

64%

負載 (Ω) OCV 100 10 1 0.1

Inlet Gas Pressure (atm) 1 2 1 2 1 2 1 2 1 2 Current Density (mA/cm2) - - 5.9 6.4 47 53 314 380 1980 2320

Voltage (V) 0.98 0.98 0.8 0.88 0.69 0.79 0.54 0.63 0.37 0.35

1st cell

Power Density (mW/cm2) - - 4.72 5.63 32.4 41.9 170 239 732.6 812

Voltage (V) 0.92 0.93 0.78 0.83 0.53 0.59 0.24 0.37 0.14 0.21

2nd cell Power Density (mW/cm2) - - 4.6 5.31 24.9 31.3 75.4 141 277.2 487.2

Voltage (V) 0.92 0.93 0.8 0.84 0.64 0.71 0.34 0.41 0.24 0.26

3rd cell Power Density (mW/cm2) - - 4.72 5.38 30.1 37.6 107 156 475.2 603.2

Voltage (V) 0.93 0.94 0.9 0.85 0.62 0.74 0.52 0.61 0.32 0.41

4th cell Power Density (mW/cm2) - - 4.66 5.44 29.1 39.2 163 232 633.6 951.2

Voltage (V) 0.94 0.95 0.79 0.85 0.62 0.71 0.42 0.51 0.263 0.303

Average Power Density (mW/cm2) - - 4.68 5.44 2.91 3.75 130 192 520 702

Voltage (V) 3.75 3.78 3.17 3.4 2.48 2.83 1.66 2.02 1.05 1.21

Current (A) - - 0.03 0.034 0.25 0.28 1.66 2.01 10.47 12.27

4-cell Stack

Power (W) - - 0.1 0.12 0.62 0.80 2.76 4.06 11 14.85

計畫成果自評

ASME Conference 及 Journal,並已獲得幾項相關專利。

已發表論文:

1. Ming-San Lee, Long-Jeng Chen, Zeng-Ru He, & Shih-Hong Yang, “The Development of A Heterogeneous Composite Bipolar Plate of PEMFC,” Accepted by Journal of Fuel Cell Science and Technology, ASME, in April 2004.

2. Long-Jeng Chen, and Ming-San Lee, “A Stack Design for Portable PEMFC – Based on the Newly Developed Heterogeneous Composite Bipolar Plate,” 2nd International Conference on Fuel Cell Science, Engineering and Technology, ASME, Rochester, NY, U.S.A., June 14-16, 2004.

3. 陳龍正,李明三,莊雲羽,2003 年12月,質子交換膜燃料電池組之製作與性能最佳

(4) U. S. Patent, “HETEROGENEOUS COMPOSITE BIPOLAR PLATE OF A FUEL CELL,” Creators: Ming San LEE, Long Jeng CHEN, Chin Chia SU, Ming Chih LIN, Applied in January, 2003.

(5) 新型專利,“外部串接之單層多電池的燃料電池結構“創作人李明三,陳龍正,申 請中。