• 沒有找到結果。

1. Amako, K., Y. Meno, and A. Takade. 1988. Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J Bacteriol 170:4960-2.

2. Arricau, N., D. Hermant, H. Waxin, C. Ecobichon, P. S. Duffey, and M. Y.

Popoff. 1998. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29:835-50.

3. Bijlsma, J. J., and E. A. Groisman. 2003. Making informed decisions:

regulatory interactions between two-component systems. Trends Microbiol 11:359-66.

4. Boulanger, A., A. Francez-Charlot, A. Conter, M. P. Castanie-Cornet, K.

Cam, and C. Gutierrez. 2005. Multistress regulation in Escherichia coli:

expression of osmB involves two independent promoters responding either to sigmaS or to the RcsCDB His-Asp phosphorelay. J Bacteriol 187:3282-6.

5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.

Anal Biochem 72:248-54.

6. Cano, D. A., G. Dominguez-Bernal, A. Tierrez, F. Garcia-Del Portillo, and J. Casadesus. 2002. Regulation of capsule synthesis and cell motility in Salmonella enterica by the essential gene igaA. Genetics 162:1513-23.

7. Carballes, F., C. Bertrand, J. P. Bouche, and K. Cam. 1999. Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol Microbiol 34:442-50.

8. Castanie-Cornet, M. P., K. Cam, and A. Jacq. 2006. RcsF is an outer membrane lipoprotein involved in the RcsCDB phosphorelay signaling pathway in Escherichia coli. J Bacteriol 188:4264-70.

9. Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W.

Foster. 1999. Control of acid resistance in Escherichia coli. J Bacteriol 181:3525-35.

10. Castanie-Cornet, M. P., H. Treffandier, A. Francez-Charlot, C. Gutierrez, and K. Cam. 2007. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153:238-46.

11. Chang, C., S. F. Kwok, A. B. Bleecker, and E. M. Meyerowitz. 1993.

Arabidopsis ethylene-response gene ETR1: similarity of product to

12. Chen, M. H., S. Takeda, H. Yamada, Y. Ishii, T. Yamashino, and T.

Mizuno. 2001. Characterization of the RcsC-->YojN-->RcsB phosphorelay signaling pathway involved in capsular synthesis in Escherichia coli. Biosci Biotechnol Biochem 65:2364-7.

13. Christ, D., and J. W. Chin. 2008. Engineering Escherichia coli heat-resistance by synthetic gene amplification. Protein Eng Des Sel 21:121-5.

14. Clavel, T., J. C. Lazzaroni, A. Vianney, and R. Portalier. 1996. Expression of the tolQRA genes of Escherichia coli K-12 is controlled by the RcsC sensor protein involved in capsule synthesis. Mol Microbiol 19:19-25.

15. Conter, A., R. Sturny, C. Gutierrez, and K. Cam. 2002. The RcsCB His-Asp phosphorelay system is essential to overcome chlorpromazine-induced stress in Escherichia coli. J Bacteriol 184:2850-3.

16. Davalos-Garcia, M., A. Conter, I. Toesca, C. Gutierrez, and K. Cam. 2001.

Regulation of osmC gene expression by the two-component system rcsB-rcsC in Escherichia coli. J Bacteriol 183:5870-6.

17. De Biase, D., A. Tramonti, F. Bossa, and P. Visca. 1999. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198-211.

18. de Lorenzo, V., and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386-405.

19. Erickson, K. D., and C. S. Detweiler. 2006. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol Microbiol 62:883-94.

20. Fabret, C., V. A. Feher, and J. A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181:1975-83.

21. Francez-Charlot, A., B. Laugel, A. Van Gemert, N. Dubarry, F. Wiorowski, M. P. Castanie-Cornet, C. Gutierrez, and K. Cam. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823-32.

22. Garcia-Calderon, C. B., J. Casadesus, and F. Ramos-Morales. 2007. Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence.

J Bacteriol 189:6635-44.

23. Garcia-Calderon, C. B., J. Casadesus, and F. Ramos-Morales. 2009.

Regulation of igaA and the Rcs system by the MviA response regulator in Salmonella enterica. J Bacteriol.

24. Garcia-Calderon, C. B., M. Garcia-Quintanilla, J. Casadesus, and F.

Ramos-Morales. 2005. Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. Microbiology 151:579-88.

25. Gottesman, S., P. Trisler, and A. Torres-Cabassa. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol 162:1111-9.

26. Hagiwara, D., M. Sugiura, T. Oshima, H. Mori, H. Aiba, T. Yamashino, and T. Mizuno. 2003. Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185:5735-46.

27. Hall, H. K., and J. W. Foster. 1996. The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178:5683-91.

28. Hersh, B. M., F. T. Farooq, D. N. Barstad, D. L. Blankenhorn, and J. L.

Slonczewski. 1996. A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978-81.

29. Huang, Y. H., L. Ferrieres, and D. J. Clarke. 2006. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 157:206-12.

30. Iyer, R., C. Williams, and C. Miller. 2003. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556-61.

31. Joseph, S., and D. W. Russell. 2001. Molecular Cloning: a laboratory manual

-3rd edition. Cold Spring Harbor Laboratory Press.

32. Kato, A., H. Ohnishi, K. Yamamoto, E. Furuta, H. Tanabe, and R. Utsumi.

2000. Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci Biotechnol Biochem 64:1203-9.

33. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191-7.

34. Kelley, W. L., and C. Georgopoulos. 1997. Positive control of the two-component RcsC/B signal transduction network by DjlA: a member of the DnaJ family of molecular chaperones in Escherichia coli. Mol Microbiol 25:913-31.

35. Lai, Y. C., H. L. Peng, and H. Y. Chang. 2001. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infect Immun 69:7140-5.

36. Lai, Y. C., H. L. Peng, and H. Y. Chang. 2003. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788-800.

37. Laubacher, M. E., and S. E. Ades. 2008. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190:2065-74.

38. Liang, W. C. 2002. Functional analysis of the Two-component System KvhAS in Klebsiella pneumoniae CG43 Master Thesis, Graduate Institute of Biological Science and Technology, National Chiao Tung University.

39. Lin, C. T., T. Y. Huang, W. C. Liang, and H. L. Peng. 2006. Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J Biochem 140:429-38.

40. Ma, Z., N. Masuda, and J. W. Foster. 2004. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186:7378-89.

41. Majdalani, N., and S. Gottesman. 2005. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379-405.

42. Majdalani, N., M. Heck, V. Stout, and S. Gottesman. 2005. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J Bacteriol 187:6770-8.

43. Malki, A., H. T. Le, S. Milles, R. Kern, T. Caldas, J. Abdallah, and G.

Richarme. 2008. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J Biol Chem 283:13679-87.

44. Mariscotti, J. F., and F. Garcia-del Portillo. 2009. Genome expression analyses revealing the modulation of the Salmonella Rcs regulon by the attenuator IgaA. J Bacteriol 191:1855-67.

45. Masuda, N., and G. M. Church. 2003. Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699-712.

46. Mates, A. K., A. K. Sayed, and J. W. Foster. 2007. Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189:2759-68.

47. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press.

48. Mizuta, K., M. Ohta, M. Mori, T. Hasegawa, I. Nakashima, and N. Kato.

1983. Virulence for mice of Klebsiella strains belonging to the O1 group:

relationship to their capsular (K) types. Infect Immun 40:56-61.

49. Moreau, P. L. 2007. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 189:2249-61.

50. Nishino, K., and A. Yamaguchi. 2001. Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J Bacteriol 183:1455-8.

51. Ørskov, I., and F. Ørskov. 1984. Serotyping of Klebsiella. Methods Microbiol 14.

52. Peng, H. L., P. Y. Wang, J. L. Wu, C. T. Chiu, and H. Y. Chang. 1991.

Molecular epidemiology of Klebsiella pneumoniae. Chinese journal of microbiology and immunology 24:264-71.

53. Perraud, A. L., V. Weiss, and R. Gross. 1999. Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7:115-20.

54. Podschun, R., I. Penner, and U. Ullmann. 1992. Interaction of Klebsiella capsule type 7 with human polymorphonuclear leucocytes. Microb Pathog 13:371-9.

55. Podschun, R., and U. Ullmann. 1992. Klebsiella capsular type K7 in relation to toxicity, susceptibility to phagocytosis and resistance to serum. J Med Microbiol 36:250-4.

56. Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589-603.

57. Pruss, B. M., C. Besemann, A. Denton, and A. J. Wolfe. 2006. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 188:3731-9.

58. Richard, H. T., and J. W. Foster. 2003. Acid resistance in Escherichia coli.

Adv Appl Microbiol 52:167-86.

59. Scarlato, V., B. Arico, M. Domenighini, and R. Rappuoli. 1993.

Environmental regulation of virulence factors in Bordetella species. Bioessays 15:99-104.

60. Schwan, W. R., S. Shibata, S. Aizawa, and A. J. Wolfe. 2007. The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli. J Bacteriol 189:7159-63.

61. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850-8.

62. Skorupski, K., and R. K. Taylor. 1996. Positive selection vectors for allelic exchange. Gene 169:47-52.

63. Stock, J. B., A. M. Stock, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature 344:395-400.

64. Toyota, C. G., C. L. Berthold, A. Gruez, S. Jonsson, Y. Lindqvist, C.

Cambillau, and N. G. Richards. 2008. Differential substrate specificity and kinetic behavior of Escherichia coli YfdW and Oxalobacter formigenes formyl coenzyme A transferase. J Bacteriol 190:2556-64.

65. Tsai, B. S. 2008. Regulation of yfiD gene expression in Klebsiella pneumoniae CG43. Master Thesis, Graduate Institute of Biological Science and Technology, National Chiao Tung University.

66. Virlogeux, I., H. Waxin, C. Ecobichon, J. O. Lee, and M. Y. Popoff. 1996.

Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691-8.

67. Wang, J. H., Y. C. Liu, S. S. Lee, M. Y. Yen, Y. S. Chen, J. H. Wang, S. R.

Wann, and H. H. Lin. 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26:1434-8.

68. Wang, Q., Y. Zhao, M. McClelland, and R. M. Harshey. 2007. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 189:8447-57.

69. Williams, P., P. A. Lambert, M. R. Brown, and R. J. Jones. 1983. The role of the O and K antigens in determining the resistance of Klebsiella aerogenes to serum killing and phagocytosis. J Gen Microbiol 129:2181-91.

70. Wu, C. Y. 2008. Functional characterization of Fur in Klebsiella pneumoniae CG43. Master Thesis, Graduate Institute of Biological Science and Technology, National Chiao Tung University.

71. Wyborn, N. R., S. L. Messenger, R. A. Henderson, G. Sawers, R. E.

Roberts, M. M. Attwood, and J. Green. 2002. Expression of the Escherichia coli yfiD gene responds to intracellular pH and reduces the accumulation of acidic metabolic end products. Microbiology 148:1015-26.

72. Yeh, K. M., A. Kurup, L. K. Siu, Y. L. Koh, C. P. Fung, J. C. Lin, T. L.

Chen, F. Y. Chang, and T. H. Koh. 2007. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. J Clin Microbiol 45:466-71.

73. Yu, W. L., W. C. Ko, K. C. Cheng, H. C. Lee, D. S. Ke, C. C. Lee, C. P.

Fung, and Y. C. Chuang. 2006. Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42:1351-8.

表一:本研究所使用的菌株

細菌菌株 基因型或相關特性 來源或

參考文獻 E. coli:

JM-109 RecA1 supE44 endA1 hsdR17 gyrA96 rolA1 thi Δ(lac-proAB)

Laboratory stock S17-1λpir Tpr Smr recA, thi, pro, hsdRM

[PR4-2-Tc::Mu:Kmr Tn7](pir)

(18)

K. pneumoniae:

CG43 K2 serotype (52)

CG43S3 rspl mutant, Smr (52) CG43S3ΔrcsB rcsB mutant in CG43S3, Smr (36)

CG43S3ΔrcsA rcsA mutant in CG43S3, Smr Laboratory stock

Z01 lacZ mutant in CG43S3, Smr (39)

Z01ΔrcsB rcsB mutant in Z01, Smr Laboratory stock

Z01ΔkvhA kvhA mutant in Z01, Smr Laboratory stock

CG43S3Δcfa cfa mutant in CG43S3, Smr This study CG43S3ΔyfdX yfdX mutant in CG43S3, Smr This study

表二:本研究所使用的質體

質體 相關特性 來源或

參考文獻

yT&A PCR cloning vector,Apr Yeastern Biotech

Co.

pKAS46 Suicide vector,rpsL,Kmr Apr (62)

pLacZ15 A derivative of pYC016 (35), containing a promoterless lacZ from K. pneumoniae

CG43S3, Cmr (39)

pRK415 broad-host-range IncP cloning vector, mob, Tcr (33)

pKvhAcTA 698 bp PCR product carrying kvhA cloned into yT&A, Apr (65) pKvhAcPP BamHI/EcoRI digested fragment of pKvhAcTA cloned into pCPP45, Tcr (65)

pA15 467 bp PCR product carrying putative kvhA promoter cloned into pLacZ15, Cmr (38) pF15 379 bp PCR product carrying putative kvhA promoter cloned into pLacZ15, Cmr (38) pE15 180 bp PCR product carrying putative kvhA promoter cloned into pLacZ15, Cmr (38) pCPP45 broad-host-range cloning vector with the partition region from RK2 plasmid, Tcr Dr. David Bauer at

Cornell University

pHY123 rcsB complement plasmid, Tcr Laboratory stock

質體 相關特性 來源或 參考文獻

pHY064 424 bp PCR product carrying putative rcsB promoter cloned into pLacZ15, Cmr Laboratory stock PhdeD-hdeB1 417 bp PCR product carrying putative hdeD-hdeB1 promoter cloned into pLacZ15, Cmr Laboratory stock

PyfdX 417 bp PCR product carrying putative yfdX promoter cloned into pLacZ15, Cmr Laboratory stock Pcfa 322 bp PCR product carrying putative cfa promoter cloned into pLacZ15, Cmr This Study

PhdeB2 409 bp PCR product carrying putative hdeB2 promoter cloned into pLacZ15, Cmr This Study

PydeP 330 bp PCR product carrying putative ydeP promoter cloned into pLacZ15, Cmr This Study PyhiO 396 bp PCR product carrying putative yhiO promoter cloned into pLacZ15, Cmr This Study pCH012 two about 1kb DNA fragments flanking the yfdX cloned into yT&A, Apr This Study

pCH015 EcoRI/XbaI digested fragment of pCH012 cloned into pKAS46, Kmr Apr This Study pCH013 two about 1kb DNA fragments flanking the cfa cloned into yT&A, Apr This Study

pCH014 EcoRI/XbaI digested fragment of pCH013 cloned into pKAS46, Kmr Apr This Study pCH017 283 bp PCR product carrying putative yfdX promoter cloned into yT&A, Apr This Study

PyfdX-2 BamHI/BglII digested fragment of pCH017 cloned into pLacZ15, Cmr This Study

pCH018 216 bp PCR product carrying putative yfdX promoter cloned into yT&A, Apr This Study

PyfdX-3 BamHI/BglII digested fragment of pCH018 cloned into pLacZ15, Cmr This Study

PkvhA-1 409 bp PCR product carrying putative kvhA promoter cloned into pLacZ15, Cmr This Study

PkvhA-2 276 bp PCR product carrying putative kvhA promoter cloned into pLacZ15, Cmr This Study

表三:本研究所使用的引子

引子 序列

CH001 5'-CCCAGATCTCACCCCACTCTTCCCACGCG-3' CH002 5'-CCCAGATCTCTCATAGCTTCTCCATCACGCCC-3' CH003 5'-GACGGATCCGATTATCGCATTCATGGGGGC-3' CH005 5'-CCCGGATCCCTGACCTGAGCCTGGCCC-3'

CH006 5'-CCTAGATCTGGTCATCTCTTTACTCCTGCTGC-3' CH007 5'-CCCGGATCCAGCCATAGTGTTACTCCTTCCA-3' CH008 5'-CCTAGATCTCTGATCATACCTCCTCCCCG-3' CH015 5'-CCACCGCGGCGCTACTCATT-3'

CH024 5'-AGAAGGCCACCGGGGTCATG-3' CH027 5'-AGCAGACCGGCTCCGGACT-3' CH028 5'-AACGTCCTGATCTACGCCGC-3'

CH031 5'-GTATCGACAAAACCCATCGCC-3'

CH033 5'-GACGGATCCGGGCTAAACGCATTTAAGGTG-3' CH034 5'-GACGGATCCGCCTGACGCTGAATAAAAAGC-3' CH035 5'-CCTAGATCTATCACCAAACGCAGCCAGC-3'

表四:可能由RcsB所調控的抗酸基因

灰色部分表示選出的6 個基因

基因 功能描述 AR 系統 在克雷白氏肺炎桿菌中

是否有同源基因

RcsB 結合序列數目

adiA arginine decarboxylase III 是 1

appB cytochrome oxidase bd-II, subunit II ─a 是 0

cfa cyclopropane fatty acid synthetase I 是 5

gadA glutamate decarboxylase II 否 Xb

gadB glutamate decarboxylase II 否 Xb

gadC putative glutamate:GABA antiporter II 否 Xb

hdeA acid-resistance protein I 否 Xb

hdeB2 acid-resistance protein I 是 4

hdeD acid-resistance membrane protein ─a 是 4

ydeP putative anaerobic dehydrogenases ─a 是 1

ydgK putative oxidoreductase ─a 是 0

yfdX hypothetical protein ─a 是 4

yhiO universal stress protein UspB ─a 是 3

yjdE (adiC) putative arginine:agmatine antiproter III 是 1

a:不屬於任何一套 AR 系統

表五:CG43S3 與CG43S3ΔrcsB在中性環境下表現量有差異的蛋白質

Match ID pI Mr (kDa) Expressional fold change 167 5.60 107 ↓1.50 215 5.56 92 ↓1.24 332 5.20 72 ↓1.28 412 6.26 65 ↑1.10 491 6.36 57 ↑1.30 553 6.29 51 ↑1.10 821 6.04 34 ↑1.21

表六:CG43S3 與CG43S3ΔrcsB在酸性環境下表現量有差異的蛋白質

Match ID pI Mr (kDa) Expressional fold change 772 5.98 25 ↓2.18 817 5.23 21 ─a 832 5.05 19 ─a 879 5.92 14 ↓1.13 946 5.98 10 ↓1.22 972 4.70 9 ↓1.90 973 4.59 9 ↓1.52 1064 5.08 18 ↑1.14 a:只在 CG43S3 中出現的蛋白質

(A) (B)

圖一:rcsB基因缺損降低克雷白氏肺炎桿菌的抗酸能力

細菌在 LB 培養液隔夜培養後,20 倍稀釋至新鮮的 LB 培養液 中,再培養3 個小時至 OD600約為0.6~0.8,之後將菌體移至 pH 4.4 的 LB 培養液中,適應 1 小時後,再移至 pH 3.0 的 M9 培養 液中,培養1 小時 (A)或 45 分鐘 (B)後,取適當菌液稀釋塗盤 後,計算菌數;存活率是根據在 45 分鐘或 1 小時後,每毫升存 活的菌數和初始菌數的比值。pHY123 為 rcsB 互補質體。

survival rate (%)

10 20 30 40 50

Δrcs B[pR

K415] Δrcs

B[pH Y123]

survival rate (%)

10 20 30 40 50 60

CG43S3 ΔrcsB

相關文件