• 沒有找到結果。

The analysis of 4H-SiC as compared to Si as a semiconductor material for power MOSFET has been shown in favor of 4H-SiC due to its superior material properties. An improvement of two-order magnitude in the specific on resistance of ideal 4H-SiC MOSFET over ideal Si MOSFET is projected. However, a review of the state of the art of SiC power MOSFETs indicates that the performance progress of SiC power devices have been hampered by MOS interface related issues which resulted in high channel resistance and oxide breakdown. Numerical device simulation-based optimization efforts for this novel device have been performed which resulted in optimum device with blocking voltage more than 1.2kV.

Parameter extraction for numerical device simulation of 4H-SiC unipolar devices is the first major topic developed in this thesis. Using 2D numerical device simulation MEDICI , in the models describing electronic devices, the material parameters of Si are replaced by respective parameters of 4H-SiC reported in literature. Using the MEDICI two-dimension simulator, with already existing models to design and optimization of 4H-SiC MOSFETs.

As the main objective of the MOS device research is to bring the channel mobilities in SiC MOS devices as high as the bulk mobilities in SiC and improve reliability of SiO2 layer.

The future generation of SiC MOS based devices should the necessary quality dielectric layers and low defect between dielectric and semiconductor interface.

Reference

[1] S. Selberherr, Analysis and Simulation of Semiconductor Devices. New York:

Springer-Verlag, 1984.

[2] Technology Modeling Associates, inc., TMA MEDICI Two-dimensional Devices Simulation Program ver.2. 3., MEDICI user’s Manial, vol. 1, 1997.

[3] B.J. baliga, Modern Power devices, New York: Wiley, 1987.

[4] J. wang, and B. W. Williams, “Evaluation of high-voltage 4H-SiC switching devices,”

IEEE Trans. Elect. Dev., vol.46,p. 589,1999.

[5] P. M. shenoy and B. J. Baliga, “ The planar 6H-SiC ACCUFET: A new high-voltage power MOSFET structure,” IEEE Elect. Dev. Lett ., vol.18, p.589,1997.

[6] S.Harada, S. Suzuki, J. Senzaki, R. kosugi, K. Adachi, K. Fukuda, and K. Arau, “High channel mobility in normally-off 4H-SiC buried channel MOSFETs”, IEEE Elect. Dev.

Lett., vol. 22, p. 272,2001

[7] B. J. Baliga, “Power semiconductor device figure of merit for high-frquency applications ”, IEEE Elect. Dev. Lett., vol.10,p. 455, 1989.

[8] K. G. Pani Dharmawardana and Gehan A. J. Amaratunga, “ Modeling of high current density trench gate MOSFET ”, IEEE Elect. Dev. Lett., vol.47,p. 2420, 2000.

[9] R.Raghunathan and b. J. Baliga, “Temperature dependence of hole impact ionization coefficients in 4H and 6H ”, Solid-State Elect., vol. 43, p.199, 1999.

[10] K.Shenai, “Optimized trench MOSFET technologies for power devices,” IEEE Trans.

Elect. Dev., vol. 39, p. 1435, 1992

[11] C. Lombarbi, S.Mazini, A.Saporito, and M. Vanzi, “ A physical based mobility model for numerical simulation of nonlanar devices” ,IEEE Trans. on Computer-Aided Design, vol. 7, no. 11, p. 1164, 1988.

[12] J. N. Shenoy, J. A. Cooper, Jr, and M. R. Melloch, “High-voltage double-implanted power MOSFET’s in 6H-SiC”, IEEE Elect. Dev. Lett ., vol.18, p.93,1997.

[13] M. Ruff, H. Mitlehner, and R. Helbig, “SiC devices: Physics and numerical simulation,”

IEEE Trans. Electron Devices, vol. 41, p. 1040, June 1993.

[14] R. Singh, D. C. Cpaell, Mirinal K. Das, L. A. lipkin, and John W. Palmour“Development of high-current 4H-SiC ACCUFET ” IEEE Trans. Electron Devices, vol. 50, p. 471, Feb 2003.

[15] M. Hasanuzzaman, S. K. Islam, L.M. Tolbert, B.Ozpinect, “Model simulation and verification of a vertical double implanted (DIMOS) transistor in 4H-SiC ”.

[16] A. K. Agrarwal, J. B. Casady, L. B. Rowland, W. F. valek, M. H. White, and C. D.

Brandt, “1.1kV 4H-SiC power UMOSFET’s”, IEEE Elect. Dev. Lett, vol. 18, p.

586,1997.

[17] M.Bhatnagar and B. J. Baliga, “Comparsion of 6H-SiC, 3C-SiC, and Si for power devices”, IEEE Elect. Dev. Lett. , vol.p18, p. 586,1997.

[18] R.P.Joshi, “ Monte Carlo caluations of the temperature-and field- dependent electron transport parameters for 4H-SiC ”, J. Appl. Phys., vol.78, p.5518,1995.

[19] R. Mickevius, and J. H. Zhao, “ Monte Carlo study of electron transport in SiC ”, Appl.

Phys., vol. 83, p. 3161, 1998

[20] W. Fulop, “ Caluation of avalanche breakdown of silicon p-n junctions ”, Solid-State Elect., vol.10, p.39, 1937.

[21] C. E. Weitzel, J. W. Plamour, C. H. Carter, K. Moore, K. J. Nordquist, S. Allen, C. Thero,

“ silicon carbide High-Power Devices”IEEE Trans. Electron Devices, vol. 43, p. 1732, Oct 1996.

[22] E. Arnold and D.Alok, “ Effect of the surface states on electron transport in 4H-SiC inversion layers ”, IEEE Trans. Electron Devices, vol. 48, p. 1870, 2001.

[23] C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon ”, Solid-State Elect., vol.20, p. 77, 1977.

[24] H.Linewih, S.Dimitrijev, C. E. Weitzel, and H. B. Harrison., “ Novel

Accumulation-mode power MOSFET ”, IEEE Trans. Electron Devices, vol. 48, p. 1171,

2001.

[25] M. R. Roschke and F. schwierz, “Electron mobility models for 4h, 6H, and 3C SiC ”, IEEE Trans. Electron Devices, vol. 48, p. 1442, 2001.

[26] I. A. Khan and j. A. Cooper, J. A. Cooper, Jr., “Measurement of high-field electron transport in silicon carbide”, IEEE Trans. Electron Devices, vol. 47, p. 269, 2000.

[27] Handoko Linewih and Sima Dimitrijev., “ Channel-Carrier Mobility Parameters for 4H SiCMOSFETs ” , INTERNATIONAL CONFERENCE ON MICROELECTRONICS , VOL 2,YUGOSLAVIA, 12-15 MAY, 2002

[28] S. Onda,R.Kumar, and K.Hara, “SiC integrated MOSFETs ” Phys. Stat. Sol. Vol.162, p.369,1997.

Fig.1.1 Applications for power devices in relation to their voltage and current ratings

Fig.1.2 Lateral n-channel MOSFETs cross section.

Fig. 1.3 The cross section of various power MOSFET structure

Fig.1.4 The operation of power DMOS

Fig. 2.1 Low-field electron mobility as a function of doping concentration in 4H-SiC (perpendicular to the c-axis, T = 300 K).

Fig. 2.2 Drift velocity of electron in 4H-SiC as functions of the applied field.

Fig. 2.3 Mobility between the experimental data and simulation with the parameter values listed in Table 2-2

Fig. 2.4 Temperature dependence of the coefficients ap and bp for 4H-SiC

R

N+

Rc R

A

R

J

R

D

R

S

Gate

N+

P-base

N-Drift Region

N+ Substrate Source

DRAIN

Fig. 3.1 A cross section of a power DMOS MOSFETs structure

n+

Gate

P-well

n-n+

Drain Source

Fig. 4.1 The cross section of trench MOSFET

Fig. 4.2 The cross section of accumulation DMOS

0 1 2 3 4 5 6 7 8 6

8 10 12 14 16 18 20

Ron( ohm ic )

P-base spacing(10

-6

m)

Fig. 4.3 The relationship between P-base spacing (LP) and Ron

Fig. 4.4 The cross section of Innovative SiC ACCUFET

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1000

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

M a x imum Bloc k ing Volt age(V)

Peak Trench Concentration( 10

17

cm

-3

) NA=1.1x10 17 cm -3

Fig. 4.5(a) Effect of peak trench-region concentration on maximum operating voltage.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2

3 4 5 6 7 8 9 10 11 12

Ron(ohm ic )

Peak Trench Concentration (10

17

cm

-3

) N

A

=1.1x10

17

cm

-3

Fig. 4.5(b) Effect of peak trench-region concentration on Ron resistance

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 3.0

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

BF OM ( 10

5

V

2

/ohm ic )

Peak Trench Concentration( 10

17

cm

-3

) N

A

=1.1x10

17

cm

-3

Fig. 4.5(c) Effect of peak trench-region concentration on BFOM

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 800

900 1000 1100 1200 1300 1400 1500

M ax im un Bl oc k ing Volt age (V)

Peak trench concentration ( 10

17

cm

-3

) NA=1.6x10 17

cm -3

Fig. 4.6(a) Effect of peak trench-region concentration on maximum operating voltage.

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.0

2.5 3.0 3.5 4.0 4.5 5.0

Ron( ohm ic )

Peak Trench Concentration( 10

17

cm

-3

) N

A

=1.6x10

17

cm

-3

Fig. 4.6(b) Effect of peak trench-region concentration on Ron resistance.

1.6 1.7 1.8 1.9 2.0 2.1 4.0

4.4 4.8 5.2 5.6 6.0 6.4 6.8

BFOM( 105 V2 /ohmic )

Peak trench concentration( 10

17

cm

-3

)

NA=1.6x10

17

cm

-3

Fig. 4.6(c) Effect of peak trench-region concentration on BFOM.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 800

1000 1200 1400 1600 1800

M ax im um Blo c k ing Vol tag e(V)

P-base Thickness (10

-6

m)

Fig. 4.7(a) Effects of P-base thickness on blocking voltage.

1.2 1.4 1.6 1.8 2.0 2.2 2.4 1.5

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Ron( ohm ic )

P-base Thickness (10

-6

m)

Fig. 4.7(b) Effects of P-base thickness on Ron resistance.

1.2 1.5 1.8 2.1 2.4 3.0

3.5 4.0 4.5 5.0 5.5 6.0

BF OM ( 10

5

V

2

/ohm ic )

P-base Thickness(10

-6

m)

Fig. 4.7(c) Effects of P-base thickness on Ron resistance.

Table 1.1 Comparison of Si and SiC material properties

Table 2.1 Parameter of low field model for 4H-SiC at 300K

Parameter 4H-SiC

MUN.MIN 40cm

2

/Vs

MUN.MAX 950 cm

2

/Vs

NRFEN 2x10

17

cm

-3

ALPHAN 0.76

Table 2.2 Parameters for 4H-SiC MOSFET mobility models.

parameter Unit 4H-SiC

μmin

cm

2

/Vs 40

μmax

cm

2

/Vs 950 N

ref

cm

-3

2x10

17

α

0.76

B

1.0x10

6

C

1.74x10

5

α

l 0.0516

D

V/s 5.82x10

14

Table 3.1 Values of doping concentration, electron mobility, drift layer thickness, and specific on-resistance as a function of breakdown voltage for ideal 4H-SiC and Si power MOSFET at room temperature condition.

Breakdown

Table 4.1 Oxide electric field in the trench corner as a functions of trench width, for rectangular and round corner.

Trench width(μm) 4 8 12

Oxide electric field (

10 6

V/cm)

Rectangular corner

7.8 7.1 6.4

Oxide electric field (

10 6

V/cm) Rounded corner

6.9 6.3 5.8

Table 4.2 The dependence of the oxide electric field at the trench corner of the oxide

thickness.

Oxide thickness(μm) 0.1 0.2 0.3

E oxide

(

10 6

V/cm)

Trench width

(8

μm

)

6.3 5.7 4.9

E oxide

(

10 6

V/cm)

Trench width (12

μm

)

5.8 5.1 4.3

Table 4.3 Comparison of ACCUFET structure

Structure MAX.Blocking Voltage(V)

On-resistance (Ω)

BFOM (V

2

/Ω)

Trench 980 3.87 2.48x10

5

DIMOS 1150 7.9 1.67x10

5

Innovative 1535 4.01 5.88x10

5

相關文件