• 沒有找到結果。

FAI3 與 Mig(IgG)兩種 IgG 結合蛋白具有增強免疫反應的佐劑效應…40

二、FAI3 與 Mig(IgG)兩種 IgG 結合蛋白具有增強免疫反應的佐劑效應

雖然單純餵食 VP1 重組蛋白質即能有效提升小鼠糞便中及血液中的 VP1 抗 體效價(圖二十五~圖二十七),餵食 VP1 與 IgG binding protein 的融合蛋白(fusion protein)之效果更佳:在血液樣品中,餵食 rVP1 組的抗體效價最多增高為對照組 食 rVP1-Mig(IgG)組的抗體效價則達對照組的 10.9~11.4 倍(圖二十七,第 56 天、

第 86 天),餵食 rVP1-FAI3 組的抗體效價亦增加為對照組的 14.0~14.1 倍(圖二十

41

三、IgG 結合蛋白的「佐劑效應」應源自其與 IgG 分子結合的能力

本研究在進行小鼠餵食試驗之前,曾先藉 ELISA 的定量分析(圖十七)及螢光 標定脾臟細胞的定性分析(圖二十四),證實 rVP1-FAI3 和 rVP1-Mig(IgG)兩種融 合蛋白確能與小鼠的 IgGs 結合,並得知 rVP1-FAI3 對小鼠 IgGs 的作用力更高過

Schulze(2008)的研究發現:FAI 蛋白質可直接與 B 細胞接合;若將 FAI 蛋白 質加入「不含有 T 細胞的脾臟細胞(T-cell depleted spleen cells)」中,則其 IgG 的 分泌量會隨之而增加。這些結果表示 FAI 具有直接活化 B 細胞分泌抗體的能力,

且此活化過程勿需 T 細胞的參與(T-cell independent activation mechanism of B cells),此一發現也與我們的上述論點相符合。

今年 2 月 Ye et al.(2011)於 Nature Biotechnology 的論文指出,將人類皰疹病 毒(human herpes simplex virus)的 glycoprotein D 基因序列與小鼠 IgG 的 Fc (CH2-CH3)序列連結,並將生成的融合蛋白透過鼻腔(intranasal)途徑施給動物,結 果野生型(wild type)小鼠於隨後的病毒挑戰時能受到保護,但 neonatal Fc receptor

(FCRN,能與 IgG 的 Fc region 結合)的 knockout 小鼠則否。作者的研究認為融 合蛋白應是透過 FCRN的參與,而被呼吸道上皮細胞(respiratory epithelial cells)攝 入、轉送於 basolateral 側釋出,融合蛋白隨後經 dendritic cells 或自行移動至 mediastinal lymph nodes,活化該處的免疫相關細胞,進而活化系統性免疫反應,

42

達到對動物的免疫保護效果;另外,FCRN knockout 小鼠則因無法進行此一機制,

故而無法耐受病毒的挑戰。

在本研究中,我們並未對 IgG 結合蛋白的作用機制進行實驗探討,但透過參 考文獻(Leonetti al., 1998; Gauld et al., 2002; McGovern al., 2004)的整理分析,我們 推測當融合蛋白(VP1-IgG 結合蛋白)進入腸道時,部分分子可透過 M 細胞而被轉 運至 Peyer’s patch(PP)釋出。PP 區域富含 B 細胞、樹突細胞及巨噬細胞等抗 原呈現細胞,藉於由 IgG 結合蛋白的作用力,融合蛋白能夠與 B 細胞表面的 mIg 結合,並促使 B 細胞以 receptor-mediated endocytosis 的方式攝入融合蛋白,同時 也促進 B 細胞表現 MHC-II 分子。而被攝入的融合蛋白於胞內被分解成片段後,

可與 MHC-II 組裝成 peptide-MHC-II complex,並被轉送至細胞表面呈現,進而 活化後續的免疫反應(圖三十一)。

另一可能途徑是,PP 內的巨噬細胞(或/及樹突細胞)先與游離的抗體結合,

融合蛋白隨後吸附於抗體的 Fc region,巨噬細胞再透過 receptor-mediated endocytosis 的方式將抗體與融合蛋白的複合分子攝入,於胞內將抗原分解成片段 為黏膜性佐劑(mucosal adjuvants)的潛力。除此之外,由於其可與 IgG 結合的性 質,在免疫化學相關的基礎研究或產業應用上,這兩種分子也將具有廣泛的應用 價值,例如應用於抗體純化、抗體訊號放大、藥物開發、、、等。相較於已被普 遍使用的 protein A 和 protein G,FAI3 及 Mig(IgG)是否具有更優勢的性質,為有 待進一步探討的課題,然而本研究現有的實驗數據則顯示這兩種分子對於 IgG 的

43

作用力具有物種間的差異性。

依據圖十七~圖十八的資料,VP1-FAI3 及 VP1-Mig(IgG)兩種融合蛋白均可 與鼠和兔的 IgG 結合作用,而單獨 VP1 重組蛋白質則否。因此,我們可以推知 這兩種融合蛋白與 IgG 的結合能力應是源自於 FAI3 及 Mig(IgG)的分子特性。然 而圖十九的數據卻顯示 VP1-FAI3 及 VP1-Mig(IgG)兩種融合蛋白均無法與山羊 (goat)的 IgG 結合,由於在該實驗中,用以偵測結合力的 GAM-AP 能與正對照組 的 NIM 反應良好,故兩種融合蛋白「不」與山羊 IgG 作用的結果,應不是實驗 操作不當所造成。

針對上述的結果,我們起初懷疑是否因為在融合蛋白中,VP1 與 FAI3[或與 Mig(IgG)]之間,僅靠兩個氨基酸(Gly-Ser)連結而產生 steric hindrance 或不正確 folding 的問題,進而影響融合蛋白與山羊 IgG 的作用力。為探究此一問題,我 們於是重新進行單獨選殖 FAI3 及 Mig(IgG)的實驗,並以大腸桿菌表現生成的 rFAI3 及 rMig(IgG)(圖二十),進行與三物種(鼠、兔、山羊)IgG 作用力的測試。

而圖二十一~圖二十三的結果則清楚指出,rFAI3 與 rMig(IgG)確實只能與鼠和兔

44

Human:Genbank Accession no. P01859.2 (IgG CH2-CH3 domain) Mouse:Genbank Accession no. AAK53870.1 (IgG CH2-CH3 domain) Rabbit:Genbank Accession no. ABB21727.1 (IgG CH2 domain)

Goat:Genbank Accession no. AAX45026.1 (IgG CH2-CH3 domain)

五、以大腸桿菌生產 VP1 口服疫苗的優勢及改進

45

許多產品,如重組胰島素(Novo-Nordisk,NovoRapid),甚至是重組 B 型肝炎 疫苗(Merck,RECOMIVAX HB),皆顯示酵母菌作為重組蛋白質生產系統的 潛力,未來若是能將本研究的重組蛋白質以酵母菌來表現生產,便有利於提升民 眾的接受度。

六、結論

本研究單獨餵食 rVP1 便能顯著提升小鼠糞便及血液中的 VP1 抗體效價,而 後續過追透加餵食 rVP1 後,小鼠體內 VP1 抗體快速增長的情形顯示 rVP1 具有 EV71 口服疫苗的應用潛力。另外餵食小鼠含有 IgG 結合蛋白[FAI3 及 Mig(IgG)]

的 VP1 重組融合蛋白質後,能夠進一步提升 VP1 抗體效價,顯示本研究使用的 IgG 結合蛋白具有增進免疫反應的佐劑功能,若是後續的研究能驗證 IgG 結合蛋 白在使用上的安全性,就能夠藉由其特性來開發針對 B 細胞發育有缺失病人所 使用的疫苗,還能避免 Nasalflu下市的情形再次發生,而其 IgG 結合的特性,

也能應用於抗體純化、藥物標定及細胞染色等基礎研究。至於我們生產的 VP1 重組蛋白質,其具備與 EV71 感染病患抗血清作用的能力,在臨床上具有發展 EV71 診斷技術的潛力。而本研究所生產的 VP1 抗血清,其具備的高效價也可以 藉由免疫化學分析,來建立快速的 EV71 診斷方法。

46

伍、參考文獻

Arita, N., Shimizu, H., Nagata. N., Ami, Y., Suzaki. Y., Sata. T., Iwasaki.T., Miyamura,T., 2005, Temperature-sensitive mutants of enterovirus 71 show Attenuation in cynomolgus monkeys. J Gen Virol 86, 1391-1401.

Atkins, K.L., Burman, J.D., Chamberlain, E.S., Cooper, J.E., Poutrel, B., Bagby, S., Jenkins, A.T., Feil, E.J., van den Elsen, J.M., 2008, S. aureus

IgG-binding proteins SpA and Sbi: host specificity and mechanisms of immune complex formation. Mol Immunol 45, 1600-1611.

Chang, L.Y., Huang, Y.C., Lin, T.Y., 1998, Fulminant neurogenic pulmonary oedema with hand, foot, and mouth disease. Lancet 352, 367-368.

Chatproedprai, S., Theanboonlers, A., Korkong, S., Thongmee, C., Wananukul, S., Poovorawan, Y., 2010, Clinical and molecular characterization of

hand-foot-and-mouth disease in Thailand, 2008-2009. Jpn J Infect Dis 63, 229-233.

Chen, H.F., Chang, M.H., Chiang, B.L., Jeng, S.T., 2006, Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enerovirus 71, Vaccine 24, 2044-2051.

Chen, H.L., Huang, J.Y., Chu, T.W., Tsai, T.C., Hung, C.M., Lin, C.C., Liu, F.C., Wang, L.C., Chen, Y.J., Lin, M.F., Chen, C.M., 2008, Expression of VP1 protein in the milk of transgenic mice: a potential oral vaccine protects against enterovirus 71 infection. Vaccine 26, 2882-2889.

Chiu, C.H., Chu, C., He, C.C., Lin, T.Y., 2006, Protection of neonatal mice from lethal enterovirus 71 infection by maternal immunization with attenuated Salmonella enterica serovar Typhimurium expressing VP1 of enterovirus 71.

Microbes Infect 8, 1671-1678.

Chung, C.Y., Chen, C.Y., Lin, S.Y., Chung, Y.C., Chiu, H.Y., Chi, W.K., Lin, Y.L., Chiang, B.L., Chen, W.J., Hu, Y.C., 2010, Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine 28, 6951-6957.

Chung, Y.C., Ho, M.S., Wu, J.C., Chen, W.J., Huang, J.H., Chou, S.T., Hu, Y.C., 2008, Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine 26, 1855-1862.

Coombes, J.L., Siddiqui, K.R., Arancibia-Carcamo, C.V., Hall, J., Sun, C.M., Belkaid, Y., Powie, F., 2007, A functionally specialized population of mucosal CD103+ DCs induce Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-depedent mechanism. J Exp Med 204, 1757-1764.

47

Cox, E., Verdonck, F., Vanrompay, D., Goddeeris, B., 2006, Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 37, 511-539.

Cox, J.C., Coulter, A.R., 1997, Adjuvants--a classification and review of their modes of action. Vaccine 15, 248-256.

De Magistris, M.T., 2006, Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58, 52-67.

Deby-Dupont, G., Croisier, J.L., Camus, G., Brumioul, D., Mathy-Harter, M., Sondag, D., Deby, C., Lamy, M., 1994, Inactivation of alpha2-macroglobulin by activated human polymorphonuclear leukocytes. Mediastors Inflamm 3, 114-123.

Fagarasan, S,. Kinoshita, K., Muramatsu, M., Ikuta, K., Honjo, T., 2001, In situ class switching and differentiation to IgA-producing cells in the gut lamina propia. Nature 413, 639-643.

Foster, T.J, 2005, Immune evasion by staphylococci. Nat Rev Microbiol 3, 945-958.

Harley, A.R, 1995, Human enterovirus infection. 155-161.

Harrison, S.L., Housden, N.G., Bottomley, S.P., Cossins, A.J., Gore, M.G., 2008, Generation and expression of a minimal hybrid Ig-receptor formed between single domains from proteins L and G. Protein Expr Purif 58, 12-22.

Heegaard, P.M., Dedieu, L., Johnson, N., Le Potier, M.F., Mockey, M., Mutinelli, F., Vahlenkamp, T., Vascellari, M., Sorensen, N.S., 2011, Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol 156, 183-202.

Hu, Y.H., Hsu, J.TA., Huang, J.H., H, M.S., H, Y.C., 2003. Formation of enterovirus-like particke aggregates by recombinant baculoviruses co-expressing P1 and 3 CD in insect cells. Biotechnol Lett 25, 919-925 Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951, Protein

measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.

Marciani, D.J., 2003, Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today 8, 934-943.

Markwell, M.A., Haas, S.M., Bieber, L.L., Tlobert, N.E., 1978, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87, 206-210.

McGhee, J.R, 2011, A mucosal gateway for vaccines. Nat Biotechnol 29, 136-138.

Moncino, M.D., Roche, P.A., Pizzo, S.V., 1991, Characterization of human alpha 2-macroglobulin monomers obtained by reduction with dithiothreitol.

Biochemistry 30, 1545-1551.

Munro, P., Flatau, G., Lemichez, E., 2007, Intranasal immunization with tetanus

48

toxoid and CNF1 as a new mucosal adjuvant protects BALB/c mice against lethal challenge. Vaccine 25, 8702-8706.

Mutsch, M., Zhou, W., Rhodes, P., Bopp, M., Chen, R.T., Linder, T., Spyr, C., Steffen, R., 2004, Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 350, 896-903.

Needham, L.K., Thelen, K., Maness, P.F., 2001, Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions. J Neurosci 21, 1490-1500.

Neutra, M.R., Kozlowski, P.A., 2006, Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 6, 148-158.

Nielsen, K., Smith, P., Yu, W., Nicoletti,P., Elzer, P., Vigliocco, A., Silva, P., Bermudez, R., Reneria, T., Moreno,F., Ruiz, A., Massengill, C., Muenks, Q., Kenny, K, Tollersrud, T., Samartino, L., Conde, S., Draghi de Benitez, G., Gall, D., Perez, B., Rojas, X., 2004, Enzyme immunoassay for the

diagnosis of brucellosis: chimeric Protein A-Protein G as a common enzyme labeled detection reagent for sera for different animal species. Vet Microbiol 101, 123-129.

Ong, K.C., Devi, S., Cardosa, M.J., Wong, K.T., 2010, Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71

encephalomyelitis against disease. J Virol 84, 661-665.

Ooi, M.H., Wong, S.C., Lewthwaite, P., Cardosa, M.J., Solomon, T., 2010, Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9, 1097-1105.

Roth-Walter, F., Bohle, B., Scholl, I., Untersmayr, E., Scheiner, O.,

Boltz-Nitulescu, G., Gabor, F., Brayden, D.J., Jensen-Jarolim, E., 2005, Targeting antigens to murine and human M-cells with Aleuria aurantia lectin-functionalized microparticles. Immunol Lett 100, 182-188.

Schulze, K., Goldmann, O., Medina, E., Guzman, C.A., 2008, The FAI protein of group C streptococci acts as a mucosal adjuvant by the specific targeting and activation of B cells. Int J Med Microbiol 298, 3-10.

Schulze, K., Goldmann, O., Toppel, A., Medina, E., Guzman, C.A., 2005, The FAI protein of group C streptococci target B-cells and exhibits adjuvant activity.

Vaccine 23, 1408-1413.

Smith, H.A., Klinman, D.M., 2001, The regulation of DNA vaccines. Curr Opin Biotechnol 12, 299-303.

Song, X.M., Perez-Casal, J., Potter, A.A., 2004, The Mig protein of Streptococcus dysgalactiae inhibits bacterial internalization into bovine mammary gland epithelial cells. FEMS Microbiol Lett 231, 33-38.

49

Spickler, A.R., Roth, J.A., 2003, Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med 17, 273-281.

Stertman, L., Strindelius, L., Sjoholm, I., 2004, Starch microparticles as an adjuvant in immunisation: effect of route of administration on the immune response in mice. Vaccine 22, 2863-2872.

Stone, G.C., Sjobring, U., Bjorck, L., Sjoquist, J., Barber, C.V., Nardella, F.A., 1989, The Fc binding site for streptococcal protein G is in the C gamma 2-C gamma 3 interface region of IgG and is related to the sites that bind

staphylococcal protein A and human rheumatoid factors. J Immunol 142, 565-570.

Stork, R., Muller, D., Kontermann, R.E., 2007, A novel tri-functional antibody fusion protein with improved pharmacokinetic properties generated by fusing a bispecific single-chain diabody with an albumin-binding domain from streptococcal protein G. Protein Eng Des Sel 20, 569-576.

Talay, S.R., Grammel, M.P., Chhatwal, G.S., 1996, Structure of a group C

streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules. Biochem J 315 ( Pt 2), 577-582.

Ueki, Y,. Goldfarb, I. S., Harindranath, N., Gore, M., Koprowski, H., Notkins, A.

L., Cashli, P., 1990, Clonal analysis of a human antibody response.

Quantitation of precursors of antibody-producing cells and generation and characterization of monoclonal IgM, IgG, and IgA to rabies virus. J Exp Med 171, 19-34.

Valentin-Weigand, P., Traore, M.Y., Blobel, H., Chhatwal, S., 1990, Role of alpha 2-macroglobulin in phagocytosis of group A and C streptococci. FEMS Microbiol Lett 58, 321-324.

Weiner, H.L., da Cunha, A.P., Quintana, F., Wu, H., 2011, Oral tolerance. Immunol Rev 241, 241-259.

Wilson-Welder, J.H., Torres, M.P., Kipper, M.J., Mallapragada, S.K.,

Wannemuehler, M.J., Narasimhan, B., 2009, Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 98, 1278-1316.

Wu, C.N., Lin, Y.C., Fann, C., Liao, N.S., Shih, S.R., Ho, M.S., 2001, Protection against lethal enterovirus 71 infection in newborn mice by passive

immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20, 895-904.

Wu, W.H, 2007, Human enterovirus infection. Taipei City Med J 4, 597-610.

Ye, L., Zeng, R., Bai, Y., Roopenian, D.C., Zhu, X., 2011, Efficient mucosal

vaccination mediated by the neonatal Fc receptor. Nat Biotechnol 29, 158-163.

Yeo, W.M., Chow, V.T., 2007, The VP1 structural protein of enterovirus 71 interacts

50

with human ornithine decarboxylase and gene trap ankyrin repeat. Microb Pathog 42, 129-137.

Zhang, D., Lu, J., 2010, Enterovirus 71 vaccine: close but still far. Int J Infect Dis 14, e739-743.

Zhao, Y., Benita, Y., Lok, M., Kuipers, B., van der Ley, P., Jiskoot, W., Hennink, W.E., Crommelin, D.J., Oosting, R.S., 2005, Multi-antigen immunization using IgG binding domain ZZ as carrier. Vaccine 23, 5082-5090.

51

陸、圖表

(A)

(B)

圖一:腸病毒的示意圖。

(A)腸病毒的剖面(左)及表面構造(右)示意圖。腸病毒的表面為二十面體結 構,每一面皆由 VP1~VP3 三種外鞘蛋白組成,其內側則透過 VP4 加以連結表面 的外鞘蛋白,病毒顆粒的內部包埋有單股 RNA。本圖修繪自 Harley, 1995。

(B)腸病毒基因組成的示意圖。從 5’至 3’依序為 5’UTR、polyprotein open reading frame(ORF)及 3’UTR。其 polyprotein ORF 包含 P1~P3 三個區域,其中 P2 及 P3 轉譯出的產物與病毒複製及蛋白質切割的功能有關,P1 則是能轉譯 VP1~VP4 四種外鞘蛋白質。本圖修繪自 Webster, 2005。

52

(A)

(B)

圖二:兩種 IgG 結合蛋白的構造示意圖。

(A) Mig protein 的構造示意圖。從 N 端至 C 端分別為 signal peptide(SP)、α2-M binding domain、IgG binding domain 及 cell wall spanning region(WSR)等四部 分。在本研究中,我們只選殖 Mig protein 中的 IgG binding domain,並將之命名 為 Mig(IgG)。本圖參繪自 Song et al., 2004。

(B) FAI protein 的構造示意圖。從 N 端至 C 端分別為 SP、albumin binding domain

(B) FAI protein 的構造示意圖。從 N 端至 C 端分別為 SP、albumin binding domain

相關文件