• 沒有找到結果。

100 101 102 103 104 105 106 107

Vth(volt)

4 5 6 7 8

Program Erase

Fig. 3-15 The SONOS-TFT with nanowire structure maintains a 3V Vth window after 106 P/E cycles.

Chapter 4 Conclusion

In this thesis, we have successfully fabricated poly-Si SONOS-TFTs with various numbers of channels. The SONOS-TFTs can be used for both driving device application and nonvolatile memory application.

For driving device application, the electrical characteristics with various channel numbers and different gate dielectric are compared and discussed in Section 2-4. It is clear that he SONOS-TFT with ONO gate dielectric can provide higher on-current than the standard TFT with oxide gate dielectric. The devices with multiple nanowire channels have lower threshold voltage, steeper subthreshold slope, and superior driving ability. However, the characteristics of devices with nanowire structure are about the same as compared to the SONOS-TFT and standard TFT. Hence devices with nanowire structure are dominated by the corner effect.

For nonvolatile memory application, the memory characteristics of SONOS-TFT with ten strips nanowire (65nm) structure and a single channel (1μ m) structure are compared and discussed in Section 3-4. The results reveal that the program and erase efficiency are greatly improved in the nanowire structure

due to the larger electric field. In addition, excellent retention and endurance characteristics can be obtained. Therefore, the SONOS-TFT with nanowire structure could become a promising technology for next-generation nonvolatile memories.

Because the SONOS-TFTs have the driving capability and nonvolatile memory property at the same time, driving devices and memory devices can be integrated on the same substrate without increasing the fabrication steps. Hence, SONOS-TFTs are promising candidates for the system-on-panel (SOP) applications in the future.

Chapter 1

[1] H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989

[2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001

[3] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992

[4] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A.

Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.

[5] K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol.

69, pp. 1703-1706, 1991

[6] T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.

[7] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K.

Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech.

Dig, Vol. 91, pp. 563, 1991.

[8] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFET's,” IEEE Trans. Electron Devices, vol. 40, pp.

2326-2329, Dec. 1993.

[9] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton,

Tri-Gate CMOS Transistors ,”IEEE Trans. Electron Device Lett., vol. 24, pp.

263-265, Apr., 2003.

[10] N.Lindert, L Chang, Y. K. Choi, E. H. Anderson, W. C. Lee, T. J. King, J.

Bokor, and C. Hu., “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process,” IEEE Trans. Electron Device Lett., vol. 22, pp. 487-489, Oct., 2001.

[11] S. Miyamoto, S. Maegawa, S. Maeda, T. Ipposhi, H. Kuriyama, T.

Nishimura, and N. Tsubouchi, “Effect of LDD structure and channel poly-Si thinning on a gate-all-around TFT (GAT) for SRAM's,” IEEE Trans. Electron Devices, vol. 46, pp. 1693-1698, Aug. 1999.

[12] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).

[13] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).

[14] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).

[15] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, 16, 22 (2000).

[16] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).

[17] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int.

Electron Devices Meeting Tech. Dig., 521 (1995).

[18] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room

Device Lett., 18, 278 (1997).

[19] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si Ge1-x x”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).

[20] T. Uchida, “Present and future trend of electron device technology in flat panel display,” in IEDM Tech. Dig., pp. 5-10, 1991

[21] A. O. Adan, K. Suzuki, H. Shibayama, and R. Miyake, “A half-micron SRAM cell using a double-gated self-aligned polysilicon PMOS thin film transistor (TFT) load”, in Symp. VLSI Technology Dig. Tech. Papers, pp. 19–20, 1990.

[22] H. J. Cho, F. Nemati, P. B. Griffin, and J. D. Plummer, “ A novel pillar DRAM cell for 4 Git and beyond”, in Symp. VLSI Technology Dig. Tech. Papers, pp.

38-39, 1998.

[23] S. Lim, S. J. Kim, J. H. Jung, B. K. Ju, M. H. Oh, and J. F. Wager, “High quality silicon-nitride thin film grown by helium plasma-enhanced chemical vapor deposition”, in Proc. Vacuum Microelectronics Conf., pp. 406-410, 1996

[24] T. Watanabe, A Menjoh, M. Ishikawa, and J. Kumagai, “The high-frequency analogue performance of MOSFETs”, in in IEDM Tech. Dig., pp. 173-176, 1984

[25] C. K. Yang, C. L. Lee, and T. F. Lei, “Enhanced H2-plasma effects on polysilicon thin-film transistors with thin ONO gate-dielectric”, IEEE Electron Device Lett., vol. 16, pp. 228-229, June 1995.

[26] Yung-Chun Wu, Ting-Chang Chang , Po-Tsun Liu, Chi-Shen Chen, Chun-Hao Tu, Hsiao-Wen Zan, Ya-Hsiang Tai, and Chun-Yen Chang,

“High-Performance Polycrystalline Silicon Thin-Film Transistor with Multiple

vol. 84, no. 19, pp. 3822-3824, 2004.

[27] Yung-Chun Wu, Ting-Chang Chang, Po-Tsun Liu, Yuan-Chun Wu, Cheng-Wei Chou, Chun-Hao Tu, Jen-Chung Lou, Chun-Yen Chang,

“Mobility Enhancement of Polysilicon Thin-Film Transistor using Nanowire Channels by Pattern-dependent Metal-Induced Lateral Crystallization” Appl.

Phys. Lett., vol. 84, no. 14, pp. 143504 - 143504-3, 2004.

Chapter 2

[1] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982

[2] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.”

Solid-State-Electronics, Vol.38, pp.2075-2079, 1995

[3] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp.

385-387, 1993

[4] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, Vol. 41, pp. 1876-1879, 1994.

[5] Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si

thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp. 566-568, 1996.

[6] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol.

43, No. 11, pp. 1930-1936, 1996.

[7] R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp. 515-517, 1993.

[8] “Polycrystalline silicon for integrated circuits and displays”, second edition, written by Ted Kamins, pp.200-210.

[9] Y. Ma, T. Yasuda, and G. Lucovsky, “Ultrathin device quality oxide-nitride-oxide heterostructure formed by remote plasma enhanced chemical vapor deposition” Appl. Phys. Lett., vol. 64, no. 17, pp. 2226-2228, 1994,

[10] P. Sallagoity, M. Ada-Hanifi, M. Paoli and M. Haond, “Analysis of width edge effects in advanced isolation schemes for deep submicron CMOS technologies”, IEEE Electron Devices, vol. 43, pp.1900-1906, Nov. 1996.

[11] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios and R. Chau, “Tri-gate fully-depleted CMOS transistors:

Fabricaiton, design and layout”, in Symp. VLSI Technology Dig. Tech.

Papers., pp. 133-134, 2003

[12] J. G. Fossum, J. W. Yang and V. P. Trivedi, “Suppression of corner effects in triple-gate MOSFETs”, IEEE Electron Device Lett., vol. 24, no. 12, pp.

745-747, Dec. 2003.

Chapter 3

[1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)

[2] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59.

[3] P. E. Cottrell, R. R. Troutman, and T. H. Ning, IEEE J. Solid-State Circuits, 14, 442 (1979)

[4] J. Bu, M. H. White, Solid-State Electronics, 45, 113 (2001) [5] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995)

[6] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., IEEE Trans Comp Pack and Manu Tech part A., 17, 390 (1994)

[7] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995)

[8] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Proceedings of the IEEE., 91, 489 (2003)

[9] K. Kim, J. Choi, NVSMW, p.9 (2006)

[10] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, IEDM Tech. Dig., p.291 (1994)

[11] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, IEDM Tech. Dig., p.32.2.1 (2001)

[12] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti, Proc.

IRPS, p.73 (2001)

[13] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, Proc.

IRPS, p.1 (2002)

簡歷

姓 名: 蔡 佳 州

出生日期:民國七十年十一月十四日 住 址:嘉義縣布袋鎮新民里 320 號

學 歷:

國立中山大學 物理學系 (89 年 9 月-93 年 6 月)

國立交通大學電子研究所碩士班 (93 年 9 月-95 年 6 月)

論文題目:

多層閘極介電層之奈米尺度薄膜電晶體之研究

Study on Nano-Scaled Poly-Si Thin-Film Transistor with Stacked Gate Dielectric.

相關文件