• 沒有找到結果。

第三章 結果與討論

3.9 磷光材料 Pt 錯合物的結構鑑定與光學性質研究

3.9.1 Pt 磷光錯合物的結構鑑定

將 Fluorene 上 9 號位置的丁基改成甲基,利用 X-ray 分析的結果如 Fig. 3-45 所示。Pt(C^N^N)-acetylide 這個基團成一平面,而 Fluorene 基團 則與這個平面傾斜 76°。Pt(C^N^N)基團由於 π-π stacking 效應,使得彼此 之間的距離約為 3.5 Å,其結構如 Fig. 3-46 所示。

3.9.2 Pt 磷光錯合物的紫外可見光譜與螢光光譜之分析

Fig. 3-47 為Pt錯合物的UV吸收和PL放射光譜圖。在UV吸收光譜中,

300-350 nm這個區域有比較強的吸收,是屬於(C^N^N) Intraligand charge transfer 的 吸 收 , 在 350-400 nm這 個 區 域 的 吸 收 強 度 較 弱 , 是 屬 於 Pt- π*(C C) 的1MLCT transition,光譜位置在 400 nm以後的吸收則是屬於Pt- π*(C C) 的3MLCT transition [65,66]。在PL放射光譜中,最大放射峰的位 置在 586 nm,是一個黃橘光的材料,此材料的PL效率為 28 %。。

Fig. 3-45. Molecular structure of Pt complex.

Fig. 3-46. Molecular packing diagram of π stacking for Pt complex.

300 350 400 450 500 550 600 650 700 UV PL

Wavelength (nm)

In te ns ity ( a .u.)

Fig. 3-47. UV-vis absorption and PL spectra of Pt complex in toluene.

3.10 有機發光二極體光電性質與缺陷量測

3.10.1 元件的結構與製作

ITO pattern 之製作模式如第二章所示,而發光元件之結構,陽極仍為 ITO,並塗佈一層 PEDOT 來作為電洞注入層及修飾層。發光層的製作則分 別將 Pt-Fluorene 錯合物和 poly(N-vinylcarbazole) (PVK) 和(2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) 以 1.5 mg : 14 mg : 6 mg 的比例 均勻混合溶於氯苯( chlorobenzene )溶劑中,直接以旋轉塗佈之方式製作而 成,陰極之選擇則為蒸鍍一層 100 nm 鋁金屬,最後再以玻璃配合 UV 乳膠

Lu mi na n c e ( c d /m

2

) Yield (cd/A)

Voltage (V)

Fig. 3-48. Luminance-yield-voltage curves for the devices of Pt complex.

0 50 100 150 200 250

0 5 10 15 20 25 30

Curren t den s ity (m A/cm

2

)

Voltage (V)

Fig. 3-49. Current-voltage curve for the devices of Pt-Fluorene complex.

400 450 500 550 600 650 700 750 800

Inte nsity (a.u .)

Wavelength (nm)

Fig. 3-50. EL spectrum for the devices of Pt-Fluorene complex.

3.10.3 電荷深層能階瞬間光譜儀 (Q-DLTS) 研究

現三個不同的波峰,分別標示為Peak I、Peak II和Peak III,分解的圖譜顯 示於Fig. 3-52,由此可知至少有三種不同的陷域型態在此元件中。另外,

在釋放時間log τm < 2 的地方有一個小波峰,由於釋放時間太短,因此無法 對其作更一步的研究。Fig. 3-53 表示在溫度 270-330 K範圍以及△V = + 6V 下的圖形變化,從不同溫度下的波峰數值,再利用第二章所提到的公式 ( 3 ) ,將-ln(τT2)和 1/KT作圖,即可將各波峰活化能EA和俘獲交錯區域σ計 算出來。Fig. 3-54、3-55 和 3-56 分別為Peak I、Peak II和Peak III隨溫度變 化的波峰圖,而計算的arrhenius圖形則整理並表示於Fig. 3-57 中。Peak I的 活化能為 0.33 eV,俘獲交錯區域σ為 4×10-21 cm2,Peak II的活化能為 0.4 峰,分別標示為Peak I 、Peak III、Peak IV和Peak V,其分解的圖譜如Fig.

3-59 所示。其中Peak I 和III是來自於PVK+PBD的系統中,而Peak IV 和 Peak V則是屬於Pt錯合物的陷域。Fig. 3-60 表示在溫度 270-330 K範圍以及 充電時間為 1s和△V = + 6V下的圖形變化,Fig. 3-61 到 3-64 分別為Peak I 、Peak III、Peak IV和Peak V隨溫度變化的波峰圖,經過相同的計算方

式,每一個peak的arrhenius圖形表示於Fig. 3-65 中,而各個陷域的參數整

Fig. 3-51.Q-DLTS spectra measured on a ITO/PEDOT:PSS/PVK+PBD/Al device using a charging voltage ΔV = + 6V for different charging time from 1 ms to 1 s at T=300 K.

0

Fig. 3-52. Resolved Q-DLTS spectra measured on a ITO/PEDOT:PSS/

PVK+PBD/Al device using a charging voltage ΔV = + 6V for charging time 1 s at T=300 K.

Fig. 3-53. Q-DLTS spectra measured on a ITO/PEDOT:PSS/PVK+PBD/Al device in using a charging time τc = 1s and a charging voltage ΔV = + 6V for different temperatures in the range 270-330 K.

0 1000 2000

0 1 2 3 4 5 6 7 8

Δ Q (pC )

log(t) (t: us)

270 K 330 K

Fig. 3-54. Peak I obtained from the Q-DLTS spectra recorded in a ITO/

PEDOT:PSS/PVK+PBD/Al diode for different temperatures in the range 270 - 330 K with a charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

0 1000 2000

0 1 2 3 4 5 6 7 8

Δ Q (pC )

log(t) (t: us)

270 K 330 K

Fig. 3-55. Peak II obtained from the Q-DLTS spectra recorded in a ITO/

PEDOT:PSS/PVK+PBD/Al diode for different temperatures in the range 270 - 330 K with a charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

0 1000

0 1 2 3 4 5 6 7 8

Δ Q (pC )

log(t) (t: us)

270 K 330 K

Fig. 3-56. Peak III obtained from the Q-DLTS spectra recorded in a ITO/

PEDOT:PSS/PVK+PBD/Al diode for different temperatures in the range 270 - 330 K with a charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

-16 -12 -8

32 36 40 44

III II I

1/kT (eV

-1

) -l n( τT

2

)

Fig. 3-57. Arrhenius plots for Peak I to III obtained from the Q-DLTS spectra recorded in a ITO/PEDOT:PSS/PVK+PBD/Al diode for different temperatures in the range 270 - 330 K with a charging voltage: ΔV = + 6 V.

Table 3-7. Summary of the trap parameters in ITO/PEDOT/PVK+PBD/Al

Fig. 3-58. Q-DLTS spectra measured on a ITO/PEDOT:PSS/PVK+PBD+Pt complex/Al device using a charging voltage ΔV = + 6V for different charging time from 1 ms to 1 s at T=300 K.

0

Fig. 3-59. Resolved Q-DLTS spectra measured on a ITO/PEDOT:PSS/ PVK +PBD+Pt complex/Al device using a charging voltage ΔV = + 6V for charging time 1 s at T=300 K.

Fig. 3-60. Q-DLTS spectra measured on a ITO/PEDOT:PSS/PVK+PBD+Pt-complex/Al device in using a charging time τc = 1s and a charging voltage ΔV = + 6V for different temperatures in the range 270-330 K.

0 1000

0 1 2 3 4 5 6 7 8

Δ Q (pC )

log(τ) (τ: us)

270 K 330 K

Fig. 3-61. Peak I obtained from the Q-DLTS spectra recorded in a Pt-Fluorene complex diode for different temperatures in the range 270 - 330 K with a charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

0 250 500

0 1 2 3 4 5 6 7 8

Δ Q (p C )

log(τ) (τ: us)

270 K 330 K

Fig. 3-62. Peak III obtained from the Q-DLTS spectra recorded in a Pt-Fluorene complex diode for different temperatures in the range 270 - 330 K with a

charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

0 200 400

0 1 2 3 4 5 6 7 8

Δ Q (pC )

log(τ) (τ: us)

270 K 330 K

Fig. 3-63. Peak IV obtained from the Q-DLTS spectra recorded in a Pt-Fluorene complex diode for different temperatures in the range 270 - 330 K with a

charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

0 1000

0 1 2 3 4 5 6 7 8

Δ Q (pC )

log(τ) (τ: us)

270 K 330 K

Fig. 3-64. Peak V obtained from the Q-DLTS spectra recorded in a Pt-Fluorene complex diode for different temperatures in the range 270 - 330 K with a

charging time tc = 1 s, a charging voltage: ΔV = + 6 V.

-16 -12 -8 -4

32 36 40 44 48

I

V IV III

-l n (τ T

2

)

1/kT (eV

-1

)

Fig. 3-65. Arrhenius plots for Peaks obtained from the Q-DLTS spectra recorded in a ITO/PEDOT:PSS/PVK+PBD+Pt complex/Al diode for different

temperatures in the range 270 - 330 K with a charging voltage: ΔV = + 6 V.

Table 3-8. Summary of the trap parameters in ITO/PEDOT/PVK+PBD+Pt complex/Al devices.

Device Parameter Peak I Peak III Peak IV Peak V Ea (eV) 0.32 0.51 0.25 0.18 σ (cm2) 2.6×10-21 9.9×10-20 6.0×10-21 3.0×10-21 PVK+PBD+

Pt complex NT (cm-3) 6.7×1016 3.2×1016 2.7×1016 9.6×1016

第四章 結論

本實驗研究新合成的雙苯環取代之聚(1,4-仲苯基乙烯) (DP-PPV) 衍生物以及MEH-PPV高分子摻混CdSe/ZnS量子點的光學和電學特 性。在高分子P1 中,元件的最大亮度為 697 cd/m2在,最大效率則為 0.23 cd/A,在掺混CdSe/ZnS量子點後,元件的亮度可以提升到 2794 cd/m2,效率也提升為 0.9 cd/A。而在P2 的系統中,亮度從 3949 cd/m2 則為0.005 cd/A,在掺混 0.2% CdSe/ZnS量子點後,元件的亮度可以 提升到180 cd/m2,效率也提升為0.02 cd/A。而在掺混 0.4% CdSe/ZnS 量子點,亮度為155 cd/m2,效率則提高至0.03 cd/A。

利用Q-DLTS儀器,我們可以得知此在MEH-PPV高分子中,主要 有四個不同的陷域型態,分別為ET1 = 0.18 eV、ET2 = 0.24 eV和ET3 = 0.31 eV。Peak IV並不隨著溫度的變化而有所位移,此限域可能來自 較為深層的陷域。在掺混CdSe/ZnS量子點後,則產生了另一個新的陷

一平面,而fluorene基團則與這個平面傾斜 76°。Pt(C^N^N)基團由於 π-π stacking效應,使得彼此之間的距離約為 3.5 Å在PL放射光譜中,

最大放射峰的位置在 586 nm,是一個黃橘光的材料。接著利用

poly(N-vinylcarbazole)(PVK) 和(2-(4-biphenylyl)-5-(4-tert-butylphenyl) -1,3,4-oxadiazole (PBD) 掺混Pt錯合物製作元件,元件的驅動電壓為 15 V,最大亮度為 607 cd/m2,最高效率則為0.28 cd/A。

最後利用Q-DLTS儀器,我們可以得知此在PVK+PBD的系統中,

主要有三個不同的陷域型態,活化能分別為ET1 = 0.33 eV、ET2 = 0.4 eV 和ET3 = 0.51 eV。而在掺混Pt錯合物之後,有兩個陷域依然存在,分 別為Peak I 和Peak III。Peak II陷域則消失了,除此之外還產生了兩個 新的陷域,活化能分別是ET4 = 0.25 eV和ET5 = 0.18 eV。我們認為消失 的Peak II陷域可能扮演載子的淬滅中心,而新生成的Peak IV和Peak V 陷域可能有利於電子和電洞的平衡,進一步提升元件的表現。

第五章 參考文獻

State Commun. 94 (1979) 171.

[6] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51 (1987) 913.

[7] R. H. Patridge, Polymer 24 (1983)733.

[8] J. H. Borroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature 347 (1990) 539.

[9] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J.

Heeger, Nature 357 (1992) 477.

[10] R. A. Wessling, J. Polym. Sci. Polym. Symp. 72 (1985) 55.

[11] F. Papadimitrakopoulos, K. Konstadinidis, T. M. Miller, R. Opila, E. A.

Chandross, M. E. Galvin, Chem. Mater. 6 (1994) 1563.

[16] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.

[17]

Zhang, J. Z., Acc. Chem. Res. 30

(1997)

423.

[18] A. I. Ekimov, A. A. Onushchenko, J. Chem. Phys. 16 (1982) 775.

[19] L. E. Brus, J. Chem. Phys. 79 (1983) 5566.

Soc. 119 (1997) 7019.

[21] Y. Tian, T. Newton, N.A. Kotov, J. Phys. Chem. B 100 (1996) 8927.

[22] M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100 (1996) 468.

[23] B.O. Dabbousi, J. Rodrigez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.J. Jensen, M.G. Bawendi, J. Phys. Chem. B 101 (1997) 9463.

[24] V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370 (1994) 354.

[25] S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, Nature 420 (2002) 800.

[26] S. Coe, W. K. Woo, J. S. Steckel, M. Bawendi, V. Bulovi, Org. Electron. 4 (2003) 123.

[27] H. Sun, J. Zhang, H. Zhang, Y. Xuan, C. Wang, M. Li, Y. Ning, D. Ma, B.

Yang, Z. Y. Wang, Chem. Phys. Chem. 7 (2006) 2492.

[28] Y. Li, A. Rizzo, R. Cingolani, G. Gigli, Adv. Mater. 18 (2006) 2545.

[29] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulovic, Nano Lett. 7 (2007) 2196.

[30] S. A. Cartera, J. C. Scott, P. J. Brock, Appl. Phys. Lett. 71 (1997) 1145.

[31] Y. K. Kim, K. Y. Lee, O. K. Kwon, D. M. Shin, B. C. Sohn, J. H. Choi, Synth. Met. 111–112 (2000) 207.

[32] J. H. Park, S. I. Park, T. H. Kim, O. O. Park, Thin Solid Films 515 (2007) 3085.

[33] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, J.Photochem. Photobiol. A 179 (2006) 135.

[34] J. h. Park, y. T. Lim, O. O. Park, J. K. Kim, J. W. Yu, Y. C. Kim, Chem.

Mater. 16 (2004) 688.

[35] M. S. A. Abdou, F. P. Orfino, Y. K. Son, S. Holdcroft, J. Am. Chem. Soc.

119 (1997) 4518.

[36] R. N. Marks, M. Muccini, E. Lunedi, R.H. Michel, M. Murgia, R.

Zamboni, Chem. Phys. 227 (1998) 49.

[37] M. Schneider, M. Brinkmann, M. Muccini, F. Biscarini, C. Taliani, W.

Gebauer, Chem. Phys. 285 (2002) 345.

[38] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A.

Cronin, M. E. Thompson, J. Appl. Phys. 79 (1997) 7991.

[39] A. J. Campbell, D. D. C. bradely and D. G. Lidzey, J. Appl. Phys. 82 (1997) 1961.

[40] H. Antoniadis, M. A. Abkowitz, B. R. Hsieh, Appl. Phys. Lett. 65 (1994) 2030.

[41] S. Karg, J. Steiger, H. Von Seggern, Synth. Met. 111-112 (2000) 277.

[42] H. L. Gomes, P. Stallinga, H. Rost, A. B. Holmes, M. G. Harrison, R. H.

Friend, Appl. Phys. Lett. 74 (1999) 1144.

[43] M. Meier, S. Karg, K. Zuleeg, W. Bru¨tting, M. Schwoerer, J. Appl.

Phys. 84 (1998) 87.

[44] A. J. Campbell, D. D. C. Bradley, E. Werner, W. Brutting, Synth. Met. 111 (2000) 273.

[45] P. Stallinga, H. L. Gomes, H. Rost, A. B. Holmes, M. G. Harrison, R. H.

Friend, Synth. Met. 111–112 (2000) 535.

[46] A. Hepp, N. von Malm, R. Schmechel, H. von Seggern, Synth. Met.

138 (2003) 201.

[47] Y. S. Yang, S. H. Kim, J. I. Lee, H. Y. Chu, L. M. Do, H. Lee, J. Oh, T.

Zyung, M. K. Ryu, M. S. Jang, Appl. Phys. Lett. 80 (2002) 1595.

[48] G. Pham, T. U. Kampen, I. Thurzo, M. Friedrich, D. R. T. Zahn, Appl. Surf.

Sci. 212–213 (2003) 542.

[49] O. Gaudin, R. B Jackman, T. P. Nguyen, P. Le Rendu, J. Appl. Phys. 90 (2001) 4196.

[50] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibleyk, M. E.

Thompson, S. R. Forrest, Nature 395 (1998) 151.

[51] M. A. Baldo, S. Lamansk, P. E. Burrows, M. E. Thompson, S. R. Forrest,

[52] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C.

Garon, M. E. Thompson, Appl. Phys. Lett. 82 (2003) 2422.

[55] X. Jiang, A. K. Y. Jen, B. Carlson, L. R. Dalton, Appl. Phys. Lett. 80

[58] M. Pientka, V. Dyakonov, D. Meissner, A. Rogach, D. Talapin, H. Weller, L. Lutsen, D. Vanderzande, Nanotechnology 15 (2004) 163.

[59] N. C. Greenham, X. Peng, A. P. Alivisatos, Phys. Rev. B 54 (1996) 17628.

[60] T. P. Nguyen, P. Le Rendu, O. Gaudin, A. J. T. Lee, R. B. Jackman, C. H.

Huang, Thin Solid Films 511-512 (2006) 338.

[61] V. Kažukauskas, Semicond. Sci. Technol. 19 (2004) 1373.

[62] P. Stallinga, H. L. Gomes, H. Rost, A. B. Holmes, M. G. Harrison, R. H.

Friend, Synth. Met. 111–112 (2000) 535.

[63] J. Versluys, P. Clauws, Mat. Res. Soc. Symp. Proc. 763 (2003) B9.8.1.

[64] M. M. Sobolev, I. V. Kochnev, V. M. Lantratov, N. A. Cherkashin, V. V.

Emtsev, Physica B 273-274 (1999) 959.

[65] C. K. Koo, Y. M. Ho, C. F. Chow, M. H. W. Lam, T. C. Lau, W. Y. Wong, Inorg. Chem. 46 (2007) 3603.

[66] W. Lu, B. X. Mi, M. C. W. Chan, Z. Hui, C. M. Che, N. Zhu, S. T. Lee, J.

Am. Chem. Soc. 126 (2004) 4958.

學術著作

一、期刊論文:

(1) Chun-Hao Huang , Chih-Wen Lee , Chain-Shu Hsu , Cedric Renaud , Thien-Phap Nguyen* “Electro-optical properties of poly(1-(difluorophenyl)-2-(4-alkylcyclohexyl phenyl)acetylene) organic light-emitting diodes” Thin Solid Films 515 (2007) 7671- 7674.

(2) C. W. Lee , C. H. Chou , J. H. Huang , C. S. Hsu , T. P. Nguyen* “Investigations of organic light emitting diodes with CdSe(ZnS) quantum dots” Material Science and Engineering B 147 (2008) 307-311.

(3) C. Renaud , C.H. Huang , C.W. Lee , P. Le Rendu , T.P. Nguyen* “Study of trap states in polyfluorene based devices by using TSC technique” Thin Solid Films 516 (2008) 7201-7213.

(4) Cedric Renaud , Yves Josse , Chih-Wen Lee , Thien-Phap Nguyen* “Investigation of defects in polyhedral oligomeric silsesquioxanes based organic light emitting diodes”Journal of Materials Science: Materials in Electronics (2008) accepted.

(5) C. W. Lee , Y. Josse , C. S. Hsu , T. P. Nguyen* “Green emitting polyhedral oligometric silsesquioxanes/ poly(phenylene vinylene) derivative materials for highly efficient organic light emitting diodes (OLEDs)” The European Physical Journal -Applied Physics 42 (2008) 213-218.

(6) T. P. Nguyen , C. Renaud , C. H. Huang , C. N. Lo , C. W. Lee , C. S. Hsu “Effect of electrical operation on the defect states in organic semiconductors” Journal of Materials Science: Materials in Electronics (2008) accepted .

(7) Chih-Wen Lee , Sheng-Hsiung Yang , Chain-Shu Hsu* and Hsin-Fei Meng

“Improved Efficiencies in Organic Light Emitting Diodes Made with CdSe/ZnS Quantum Dots and a Semiconducting Polymer” Journal of nanoscience and nanotechnology (2008) accepted.

(8) Chih-Wen Lee , Cedric Renaud , Chain-Shu Hsu and Thien-Phap Nguyen*

“Synthesis and electro-optical properties study of Pt-fluorene complexes for OLED”

Solid State Sciences submitted (2008).

(9) Chih-Wen Lee, Cedric Renaud, Chain-Shu Hsu, and Thien-Phap Nguyen* “Traps and performance of MEH-PPV/CdSe(ZnS) nanocomposites based OLEDs”

Nanotechnology submitted (2008).

二、研討會論文:

1. K. B. Chen, C. W. Lee, Y. P. Chang, C. S. Hsu* ”New Polyhedral Oligomeric Silsesquioane containing fluorescent and phosphorescent chromophores” Proceeding of 27th ROC Polymer Symposium, Feb. 21-22, 2004.

2. C. W. Lee, C. S. Hsu* ”Improved Efficiencies in Organic Light Emitting Diodes Made with CdSe(ZnS) Quantum Dots and a Semiconducting Polymer” IUMRS-ICA, Nov 16-18, 2004.

3. C. W. Lee, C. S. Hsu* ” Nanostructure Enhanced in Organic Light Emitting Diodes Made with CdSe(ZnS) Core/Shell Type Quantum Dots and a Semiconducting Polymer” Proceeding of 28th ROC Polymer Symposium, Jan. 14-15, 2005.

4. C. W. Lee, C. S. Hsu* ”Improved Efficiencies in Organic Light Emitting Diodes Made with CdSe(ZnS) Quantum Dots and a Semiconducting Polymer” Taiwan Nano Tech, Sep 21-25, 2005.

5. C. W. Lee, C. S. Hsu* “Nano-structure Enhanced Organic Light Emitting Diodes Made with CdSe(ZnS) Quantum Dots and a Semiconducting Polymer” Proceedings of 2005 5th IEEE Conference on Nanotechnology,Nagoya, Japan, July. 11-15, 2005.

6.Yung-Hsin Yao, Chih-Wen Lee and Chain-Shu Hsu* “Polarized White Emission from Fluorene-Based Polymer Blends” The Third International OLED and PLED Workshop on Advanced Functional Materials, 2004

7. C. W. Lee, T. P. Nguyen* “Investigations of organic light emitting diodes with CdSe(ZnS) quantum dots” Invited Presentation, EMRS 2007 Spring Meeting, May

8. C. Renaud, C. H. Huang, C. W. Lee, P. Le Rendu, T. P. Nguyen “Study of trap states and their distribution in polyfluorene based devices by Thermally Stimulated Currents” Poster, EMRS 2007 Spring Meeting, May 27-June 1.

9. Yves Josse, Chih Wen Lee, Cedric Renaud, Thien Phap Nguyen “Investigation of defects in polyhedral oligomeric silsesquioxanes based organic light emitting diodes”

Oral presentation in Advanced analytical methods and devices, 12th International Conference on Defects-Recognition, Imaging and Physics in Semiconductors, 9 - 13 September 2007 Berlin (Germany)

10. Nguyen Thien Phap, Renaud Cedric, Huang Chun Hao, Lee Chih Wen “Effect of aging on the defect states in organic semiconductors” Oral presentation in Advanced analytical methods and devices,12th International Conference on Defects-Recognition, Imaging and Physics in Semiconductors, 9 - 13 September 2007 Berlin (Germany)

11. C. Renaud , C. W. Lee, P. Lerendu, C. S. Hsu, T. P. Nguyen, “Study of trap states in hybrid nanocomposite devices” European Material Research Society 2008 Spring Meeting, May 27-30, Strasbourg, France (Poster).

12. C. W. Lee, C. Renaud, P. Le Rendu, T. P. Nguyen, B. Seneclauze, R. Ziessel, H.

Kanaan, P. Jolinat, “Performance and defects in phosphorescent organic light emitting diodes” European Material Research Society 2008 Spring Meeting, May 27-30, Strasbourg, France (Oral presentation).

13. T. P. Nguyen, C. W. Lee, S. Hassen, H. C. Le, “Hybrid nanocomposites for optical applications” European Material Research Society 2008 Spring Meeting, May 27-30, Strasbourg, France (Invite presentation).

相關文件