• 沒有找到結果。

In twenty years ago, the reliability model of amorphous silicon thin film transistors had been studied. W. B. Jackson et al. (Phys. Rev. B, vol.39 p.1164, 1989) had described the defect creation by using the stretched-exponential behavior in detail.

The change of the defect density from equilibrium, ΔNs, is given by

Δ s Δ s

d N = - AD(t) N

dt (1) where A is a constant of proportionality, and D(t) is the time-dependent hydrogen diffusion coefficient. The time dependence is due to the trapping and detrapping of the hydrogen with an anomalously wide range of dwell times as it diffuses through the network. In the theory of multiple trapping for trap-limited band transport in approximately exponential distribution of trap energies, the dispersive diffusion coefficient is given by

( ) 00(ω )-α

D t = D t (2) where D00 is a microscopic diffusion, ω is a hydrogen attempt frequency, and α is the temperature-dependent dispersion parameter which is given by α = 1-β = 1-T/T0. the quantity kT0 is the characteristic energy of the exponential distribution of trapping sites, and T is the measurement temperature. Solving Eq. (1) using Eq.(2) yields the characteristic stretched exponential

( )

=

( )

0 -⎛ ⎞τ β

Δ Δ ⎜ ⎟

⎝ ⎠

s s t

N t N exp (3)

Where β = T/T0 as before, and

= 0 τ

τ τ

exp E

kT (4)

where Equations (3)-(6) relate the time dependence of defect densities to hydrogen diffusion and have a number of importance consequences which can be tested and verified by experiment.

In the MIS structure, the carrier density and hence the induced defect density depends on the distance x form the insulator. Inserting the x dependence explicitly, Eq.(1) becomes Equation (8) can be integrated over x through the thickness of the film. Defining ΔNs according to the relation

( ) ( )

density of band-tail carriers) refer to areal charge densities defined in a manner si,ilar to Eq.(8). Equation (1) and all other equations in the paper hold for these areal chare densities. Accordingly, the time dependence of areal defect densities in amorphous silicon should follow a stretched exponential behavior indicated in Eq.(3). Since the threshold-voltage shift, ΔVth = Vth(t) - Vth(∞) =ΔNs/Ci, where Vth(0) is the threshold voltage in the virgin state, Vth(∞) is the threshold voltage when equilibrium has been reached at t →∞, Ci is the insulator capacitance per unit area, the time dependence of the threshold voltage shift is given by

( ) ( )

According to Eq.(9), the threshold-voltage shift should exhibit stretched exponential behavior with t given by Eq.(4) and β = T/T0. Eq.(9) can be transformed to a typical

References

Chapter 1

1 Iwao Yagi, Sony Corp., “A Full-Color Top-Emission AMOLED Display Driven by OTFTs”, SID, 2007.

2 Masahiro Kawasaki, Shuji Imazeki, Masahiko Ando, Yoshifumi Sekiguchi, Shoichi Hirota, Sei Uemura, and Toshihide Kamata, “High-resolution full-color LCD driven by OTFTs using novel passivation film”, IEEE Trans. Electron Device, vol. 53, no. 3, pp.435-441, 2006.

3 John A. Rogers, Zhenan Bao, Kirk Baldwin, Ananth Dodabalapur, Brian Crone, V.

R. Raju, Valerie Kuck, Howard Katz, Karl Amundson, Jay Ewing, and Paul Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks”, Proc. Natl. Acad. Sci, vol. 98, no. 9, 4835-4840, 2001.

4 J. E. Northrup and M. L. Chabinyc, “Gap states in organic semiconductors:

Hydrogen- and oxygen-induced states in pentacene”, Phy. Rev. B, vol. 68, 041202, 2003.

5 Kazumasa Nomoto, Nobukazu Hirai, Nobuhide Yoneya, Noriyuki Kawashima, Makoto Noda, Masaru Wada and Jiro Kasahara, “A high-performance short-channel bottom-contact OTFT and its application to AM-TN-LCD,” IEEE Trans. Electron Device, vol. 52, no. 7, pp. 1519-1526, 2005.

6 Mizukami, M.; Hirohata, N.; Iseki, T.; Ohtawara, K.; Tada, T.; Yagyu, S.; Abe, T.;

Suzuki, T.; Fujisaki, Y.; Inoue, Y.; Tokito, S.; Kurita, T., “Flexible AMOLED panel driven by bottom-contact OTFTs”, IEEE Electron Device Lett., vol. 27, no.

4, pp. 249-251, 2006.

7 Salleo and R. A. Street, “Light-induced bias stress reversal in polyfluorene thin-film transistors”, J. Appl. Phys, vol. 94, no. 1, pp. 471-479, 2003.

8 R. A. Street, A. Salleo and M. L. Chabinyc, “Bipolaron mechanism for bias-stress effects in polymer transistors”, Phys. Rev. B, vol. 68, 085316, 2003.

9 S. J. Zilker, C. Detcheverry, E. Cantatore, and D. M. de Leeuw, “Bias stress in organic thin-film transistors logic gates”, Appl. Phys. Lett., vol. 79, 1124, 2001.

10 J. E. Northrup and M. L. Chabinyc, “Gap states in organic semiconductors:

Hydrogen- and oxygen-induced states in pentacene”, Phy. Rev. B, vol. 68, 041202, 2003.

11 H. E. Katz and Z. Bao, “The Physical Chemistry of Organic Field-Effect Transistors,” J. Phys. Chem. B 104, 671, 2000.

12 M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd Edition, Oxford University Press, New York, 1999, pp. 337–340.

13 S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson,

“Temperature-Independent Transport in High- Mobility Pentacene Transistors,”

Appl. Phys. Lett. 72, 1854, 1998.

14 N. Karl, J. Marktanner, R. Stehle, and W. Warta, “High-Field Saturation of Charge Carrier Drift Velocities in Ultrapurified Organic Photoconductors,” Synth. Met.

41– 43, 2473, 1991.

15 J. H. Scho¨n, S. Berg, Ch. Kloc, and B. Batlogg, “Ambipolar Pentacene Field Effect Transistors and Inverters,” Science 287, 1022, 2000.

16 R. R. Chance and C. L. Braun, “Intrinsic photoconduction in anthracene single crystals electric field dependence of hole and electron quantum yields”, J. Chem.

Phys., 59, 2269, 1973.

17 Lin Y. –Y., Gundlach D. J., Nelson S. F. and Jackson T. N., “Stacked pentacene layer organic thin-film transistors with improvedcharacteristics”, IEEE Electron

Device Lett., vol. 18, pp. 606–608, 1997.

18 D. Knipp, R. A.Street, A. V¨olkel and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys., 93, pp. 347-355, 2003.

19 S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H.

Shimotani, N. Yoshimoto, S. Ogawa and Y. Iwasa, “Control of carrier density by self-assembled monolayers in organic field-effect transistors”, Nat. Mater. 3, pp.

317–322, 2004.

20 H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, “Ultralow-power organic complementary circuits”, Nature, vol. 445, pp. 745–748, 2007.

21 I. Yagi, K. Tsukagoshi and Y. Aoyagi, “Modification of the electric conduction at the pentacene/SiO2 interface by surface termination of SiO2”, Appl. Phys. Lett., 86, 103502, 2005.

22 W. B. Jackson, J. M. Marshall, and M. D. Moyer, “Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon”, Phys. Rev. B 39, 1164, 1989.

23 C. C. Shih, et al., “A method to predict the performance of a-Si TFT device”, IMID’06 Digest, pp. 52-55, 2006.

24 S. H. Moon, et al., “Integrated a-Si:H TFT gate driver circuits on large area TFT-LCDs”, SID’07 Digest, pp. 1478-1481, 2007.

25 M. Chun, et al., “Integrated gate driver using highly stable a-Si TFT’s.”, IDW’05, pp. 1077-1080, 2005.

26 C. C. Chiu, C. C. Shih, J. S. Chen and W. M. Huang, “The influence of self-heating effect on the electrical instability of hydrogenated amorphous silicon TFTs”, IDW’08, Workshop on Active Matrix Displays (AMD).

27 Ling Wang, Tor A. Fjeldly, Benjamin Iniguez, Holly C. Slade, and Michael Shur,

“Self-heating and kink effects in a-Si:H thin film transistors”, IEEE Trans.

Electron Devices, vol. 47, no. 2, pp. 387-397, 2000.

Chapter 2

1 I. C. Cheng, A. Kattamis, K. Long, J. C. Sturm, S. Wagner, “Stress control for overlay registration in a-Si:H TFTs on flexible organic-polymer-foil substrates”, J of SID, 13(7), 563–568, 2005.

2 B. A. MacDonald, K. Rollins, D. MacKerron, K. Rakos, R. Eveson, K. Hashimoto and B. Rustin, “Flexible flat panel displays”, John, England, Ch.2, pp. 11–33, 2005.

Chapter 3

1 Kazumasa Nomoto, Nobukazu Hirai, Nobuhide Yoneya, Noriyuki Kawashima, Makoto Noda, Masaru Wada and Jiro Kasahara, “A high-performance short-channel bottom-contact OTFT and its application to AM-TN-LCD,” IEEE Trans. Electron Device, vol. 52, no. 7, pp. 1519-1526, 2005.

2 Masahiro Kawasaki, Shuji Imazeki, Masahiko Ando, Yoshifumi Sekiguchi, Shoichi Hirota, Sei Uemura, and Toshihide Kamata, “High-resolution full-color LCD driven by OTFTs using novel passivation film”, IEEE Trans. Electron Device, vol. 53, no. 3, pp. 435-441, 2006.

3 Mizukami, M.; Hirohata, N.; Iseki, T.; Ohtawara, K.; Tada, T.; Yagyu, S.; Abe, T.;

Suzuki, T.; Fujisaki, Y.; Inoue, Y.; Tokito, S.; Kurita, T.;, ” Flexible AMOLED panel driven by bottom-contact OTFTs,” IEEE Electron Device Lett., vol. 27, no.

4, pp. 249-251, 2006.

4 A. Salleo and R. A. Street, “Light-induced bias stress reversal in polyfluorene thin-film transistors”, J. Appl. Phys, vol. 94, no. 1, pp. 471-479, 2003.

5 R. A. Street, A. Salleo and M. L. Chabinyc, “Bipolaron mechanism for bias-stress effects in polymer transistors”, Phys. Rev. B, vol. 68, 085316, 2003.

6 S. J. Zilker, C. Detcheverry, E. Cantatore, and D. M. de Leeuw, “Bias stress in organic thin-film transistors logic gates”, Appl. Phys. Lett., vol. 79, 1124, 2001 7 J. E. Northrup and M. L. Chabinyc, “Gap states in organic semiconductors:

Hydrogen- and oxygen-induced states in pentacene”, Phy. Rev. B, vol. 68, 041202, 2003.

8 Maarten Debucquoy, Stijn Verlaak, Soeren Steudel, Kris Myny, Jan Genoe and Paul Heremans, “Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors”, Appl. Phys. Lett., vol. 91, 103508, 2007.

9 Maarten Debucquoy, Stijn Verlaak, Soeren Stoedel, Kris Myny, Jan Genoe and Paul Heremans, “Organic phototransistor behavior and light-accelerated bias stress”, Proc. of SPIE, vol. 6658, 66580R, 2007.

10 Yong-Young Noh, Dong-Yu Kim and Kiyoshi Yase, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance”, J. Appl. Phys., vol. 98, 074505, 2005.

11 Josephine B. Changa and Vivek Subramanian, “Effect of active layer thickness on bias stress effect in pentacene thin-film transistors”, Appl. Phys. Lett., vol. 88, 233513, 2006.

12 Daisuke Kawakmi, Yuhsuke Yasutake, Hideyuki Nishizawa and Yutaka Majima,

“Bias stress induced threshold voltage shift in pentacene thin-film transistors”, Jpn. J. Appl. Phys, vol. 45, pp. 1127-1129, 2006.

13 Chun-sung Chiang, Jerzy Kanicki, and Kazushige Takechi, “Electrical instability of hydrogenated amorphous silicon thin-film transistors for active matrix liquid-crystal display”, Jpn. J. Appl. Phys, vol. 37, pp. 4704-4710, 1998.

14 K. S. Karim, A. Nathan, M. Hack, and W. I. Milne, “Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs”, IEEE Electron Device Lett., vol. 25, no. 4, pp. 188-190, 2004.

15 G. Gu, M. G. Kane, and S. C. Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors”, J. Appl. Phys, vol. 101, no.1, 014504, 2007.

16 M. C. Hamilton, S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors”, IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 877-885, 2004.

Chapter 4

1 R. A. Street, A. Salleo, and M. L. Chabinyc, “Bipolaron mechanism for bias-stress effects in polymer transistors”, Phys. Rev. B, vol. 68, pp. 085316-1–085316-7, 2003.

2 Gong Gu, Michael G. Kane, and Siun-Chuon Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors”, J. Appl.

Phys, vol. 101, no.1, 014504, 2007.

3 Sangyun Lee, Bonwon Koo, Joonghan Shin, Eunkyong Lee, Hyunjeong Park and Hyoungsub Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Appl. Phys. Lett., vol. 88, 162109, 2006.

4 Yoshihide Fujiski, Hiroto Sato, Hideo Fujkaki, Youji Inoue, Shizuo Tokito and Taiichiro Kurita, “Liquid crystal display cells fabricated on plastic substrate driven by low-voltage organic thin-film transistor with improved gate insulator and passivation layer”, Jpn. J. Appl. Phys, vol. 44, 3728–3732, 2005

5 Yong-Hoon Kim, Sung-Kyu Park, Dae-Gyu Moon, Won-Keun Kim, Jeong-InHan,

“Active-matrix liquid crystal display using solution-based organic thin film transistors on plastic substrates,” Displays, vol. 25, 167–170, 2004

6 Vaibhav Vaidya, Susan Soggs, Jungbae Kim, Andreas Haldi, Joshua N. Haddock, Bernard Kippelen, and Denise M. Wilson, “Comparison of pentacene and amorphous silicon AMOLED display driver circuits,” IEEE Transactions on circuits and systems, vol. 55, no. 5, 2008.

7 C. M. Chan, Polymer Surface Modification and Characterization (Hanser Gardner, New York, 1994), Ch. 2, p 35.

8 Sang Chul Lim, Seong Hyun Kim, Jae Bon Koo, Jung Hun Lee, Chan Hoe Ku,Yong Suk Yang, and Taehyoung Zyung, “Hysteresis of pentacene thin-film transistors and inverterswith cross-linked poly(4-vinylphenol)gate dielectrics,”

Appl. Phys. Lett., vol. 90, 173512, 2007.

9 Se Hyun Kim, Jaeyoung Jang, Hayoung Jeon, Won Min Yun, Sooji Nam, and Chan Eon Park, ”Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl phenol-co-methyl methacrylate) gate dielectrics,” Appl.

Phys. Lett., vol. 92, 183306, 2008.

10 G. W. Kang, K. M. Park, J. H. Song, C. H. Lee, D. H. Hwang “The electrical characteristics of pentacene-based organic field-effect transistors with polymer gate insulators,” Curr. Appl. Phys. 5, 297–301, 2005.

11 Sang Yoon Yang, Kwonwoo Shin, and Eon Park, “The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristic”, Adv. Funct. Mater, vol. 15, 1806-1814, 2005.

12 Yunseok Jang, Do Hwan Kim, Yeong Don Park, Jeong Ho Cho,Minkyu Hwang, and Kilwon Cho, “Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor,”

Appl. Phys. Lett., vol 87, 152105, 2005.

13 Tse Nga Ng, Jürgen H. Daniel, Sanjiv Sambandan, Ana-Claudia Arias, Michael L.

Chabinyc, and Robert A. Street, “Gate bias stress effects due to polymer gate dielectrics in organic thin-film transistors,” J. Appl. Phys, vol. 103, 044506, 2008.

14 C. D. Dimitrakopoulos, A. R. Brown and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” J. Appl.

Phys, vol. 80, 2501, 1996.

15 Sangyun Lee, Bonwon Koo, Joonghan Shin, Eunkyong Lee, and Hyunjeong Park,

“Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett., vol. 88, 162109, 2006.

16 Yan Hu, Guifang Dong, Chen Liu, Liduo Wang, and Yong Qiu, “Dependency of organic phototransistor properties on the dielectric layers,” Appl. Phys. Lett., vol.

89, 072108, 2006.

17 Lijuan Zhen, Liwei Shang, Ming Liu, Deyu Tu, Zhuoyu Ji, Xinghua Liu, Ge Liu,Jiang Liu, and Hong Wang, “Light-induced hysteresis characteristics of copper Phthalocyanine organic thin-film transistors,” Appl. Phys. Lett., vol. 93, 203302, 2008.

18 Gong Gu, Michael G. Kane, and Siun-Chuon Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors,” J. Appl.

Phys, vol. 101, 014504, 2007.

19 Yong-Young Noh and Dong-Yu Kim, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance,” J.

Appl. Phys, vol. 98, 074505, 2005.

20 C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach, and B.

Batlogg, “Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density,” J. Appl. Phys, vol.

99, 034507, (2006)

21 H. W. Zan and S. C Kao, “The effects of drain-bias on the threshold voltage instability in organic TFTs,” IEEE Electron Device Lett., vol. 29, p.p155-157, no.2, 2008.

22 Gong Gu and Michael G. Kane, “Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors,” Appl. Phys. Lett., vol 92, 053305, 2008.

23 Young H. Noh, S. Young Park, Soon-Min Seo, Hong H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, vol. 9, 271–275, 2006.

24 C. Goldmann, D. J. Gundlach, and B. Batlogg, “Evidence of water-related discrete trap state formation in pentacene, single-crystal field-effect transistors,”

Appl. Phys. Lett., vol. 88, 063501, 2006.

25 F. C. Chen and C. H. Liao, “Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics,” Appl. Phys. Lett., Vol.

93, 103310, 2008.

26 Amare Benor, Arne Hoppe, Veit Wagner, Dietmar Knipp, “Electrical stability of pentacene thin film transistors,” Organic Electronics, vol. 8, 749–758, 2007.

27 Daisuke Kumaki, Tokiyoshi Umeda, and Shizuo Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deprotonation of SiOH on SiO2 gate-insulator surface,” Appl. Phys. Lett., vol. 92, 093309, 2008.

Chapter 5

1 Lisong Zhou, Alfred Wanga, Sheng-Chu Wu, Jie Sun, Sungkyu Park, and Thomas N. Jackson, “All-organic active matrix flexible display”, Appl. Phys.

Lett., vol. 88, 083502, 2006.

2 H. S. Tan, T. Cahyadi, Z. B. Wang, A. Lohani, Z. Tsakadze, S. Zhang, F. R. Zhu,

and S. G. Mhaisalkar, “Low-temperature-processed inorganic gate dielectrics for plastic-substrate-based organic field-effect transistors”, IEEE Electron Device Lett., vol. 29, no. 7, pp. 698-700, 2008.

3 Maarten Debucquoy, Stijn Verlaak, Soeren Steudel, Kris Myny, Jan Genoe and Paul Heremans, “Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors”, Appl. Phys. Lett., vol. 91, 103508, 2007.

4 Yunlong Guo, Chunyan Du, Chong-an Di, Jian Zheng, Xiangnan Sun, Yugeng Wen, Lei Zhang, Weiping Wu, Gui Yu, and Yunqi Liu, “Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor”, Appl. Phys. Lett., vol. 94, 143303, 2009.

5 Yong-Young Noh, Dong-Yu Kim and Kiyoshi Yase, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance”, J. Appl. Phys., vol. 98, 074505, 2005.

6 Kentaro Harada, Moritz Riede, Karl, Leo Olaf R. Hild and C. Michael Elliott,

“Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses”, Phys. Rev. B, 77, 195212, 2008.

7 Michael C. Hamilton, Sandrine Martin and Jerzy Kanicki, “Thin-film organic polymer phototransistors”, IEEE Trans. Electron Devices, vol. 51, no. 6, pp.

877-885, 2004.

8 R. A. Street, M. L. Chabinyc, F. Endicott, and B. Ong, “Extended time bias stress effects in polymer transistors”, J. Appl. Phys., vol. 100, 114518, 2006.

9 R. R. Chance and C. L. Braun, “Intrinsic photoconduction in anthracene single crystals Electric field dependence of hole and electron quantum yields”, J. Chem.

Phys., 59, 2269, 1973.

10 Chang Bum Park, Takamichi Yokoyama, Tomonori Nishimura, Koji Kita and

Akira Toriumi, “Molecular ordering and interface state modification for reducing bias-induced threshold voltage shift in pentacene field-effect transistors”, J.

Electrochem. Soc., 155, H575, 2008.

11 Hsiao-Wen Zan and Shih-Chin Kao, “New organic phototransistor with bias modulated photo sensitivity and bias enhanced memory effect”, IEEE Electron Device Lett., vol. 30, no. 7, pp. 721-723, 2009.

Chapter 6

1 K. Long, A. Z. Kattamis, I.-C. Cheng, H. Gleskova, S. Wagner, J. C. Sturm, M.

Stevenson, G. Yu, and M. O’Regan, “Active-matrix amorphous-Si TFT arrays at 180 oC on clear plastic and glass substrates for organic light-emitting display”, IEEE Trans. Electron Device, vol. 53, no. 8, pp. 1789-1796, 2006.

2 J. J. Huang, M. H. Lee, C. J. Tsai and Y. H. Yeh, “Hydrogenated amorphous silicon thin film transistor fabricated on glass and polyimide substrate at 200℃”, Jpn. J. Appl. Phys., vol. 46, pp. 1295-1298, 2007.

3 H. Gleskova, S.Wagner, V. Gasparìk, and P. Kovàc, “150 °C amorphous silicon thin-film transistor technology for polyimide substrates,” J. Electrochem. Soc., vol. 148, pp. G370–G374, 2001.

4 Sazonov and C. McArthur, “Sub-100 °C a-Si:H thin-film transistors on plastic substrates with silicon nitride gate dielectrics”, J. Vac. Sci. Technol. A, vol. 22, no.

5, pp. 2052–2055, 2004.

5 K. Long, A. Z. Kattamis, I.-C. Cheng, H. Gleskova, S. Wagner, and J. C. Sturm,

“Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250

℃ to 280 ℃”, IEEE Electron Device Lett., vol. 27, no. 2, pp. 111-113, 1996.

6 J. Z. Chen and I. C. Cheng, “Abnormal temperature-dependent stability of on-plastic a-SiH thin film transistors fabricated at 150 ℃”, J. Appl. Phys, vol.

104, 044508, 2008.

7 Ling Wang, Tor A. Fjeldly, Benjamin Iniguez, Holly C. Slade, and Michael Shur,

“Self-heating and kink effects in a-Si:H thin film transistors”, IEEE Trans.

Electron Devices, vol. 47, no. 2, pp.387-397, 2000.

8 W. B. Jackson, J. M. Marshall, and M. D. Moyer, “Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon”, Phys. Rev. B 39, 1164, 1989.

9 K. S. Karim, A. Nathan, M. Hack, and W. I. Milne, “Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs,” IEEE Electron Device Lett, vol. 25, no. 4, pp. 188–190, 2004.

10 S. Inoue, H. Ohshima and T. Shimoda, “Analysis of degradation phenomenon caused by self-heating in low-temperature-processed polycrystalline silicon thin film transistors”, Jpn. J. Appl. Phys., vol. 41, pp. 6313, 2002.

11 Y. Cheng and T. A. Fjeldly, “Unified physical model including self-heating effect for fully depleted SOI/MOSFET’s”, IEEE Trans. Electron Device, vol. 43, pp.

1291–1296, 1996.

12 W.S. Wong and A. Salleo, Flexible Electronics: Materials and Applications, Springer, 2009, Ch.1, pp. 22.

13 Valletta, A. Moroni, L. Mariucci, A. Bonfiglietti, and G. Fortunato, “Self-heating effects in polycrystalline silicon thin film transistors”, Appl. Phys. Lett., vol. 89, 093509, 2006.

14 H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo, “Electrical response of amorphous silicon thin-film transistors under mechanical strain,” J. Appl. Phys., vol. 92, pp. 6224-6229, 2002.

Vita

姓名:高士欽 Shih-Chin Kao 性別:男

出生日期:1980年11月26日 出生地:雲林縣

地址:雲林縣斗六市林頭里南聖路70巷23號

學歷:國立清華大學原子科學系 (1999年9月~2003年6月) 國立交通大學光電工程所碩士班 (2003年9月~2005年6月) 國立交通大學光電工程所博士班 (2005年9月~2010年2月)

論文題目:有機薄膜電晶體與非晶矽薄膜電晶體在偏壓與光照下之可 靠度分析

Bias-Stress Effect and Photo-Irradiation Effects in Organic and a-Si:H Thin Film Transistors

相關文件