• 沒有找到結果。

RNase E 與 poly(A) 聚合酶對 fumA 與 fumC mRNA 穩定性

4.2 影響 fumA 與 fumC mRNA 穩定性的因素

4.2.4 RNase E 與 poly(A) 聚合酶對 fumA 與 fumC mRNA 穩定性

4.2.3 poly(A) 聚合酶對 fumA 與 fumC mRNA 穩定性之影響

poly(A) 聚合酶可以在 mRNA 3’ 端加上一段 poly(A) tail,增加核糖核酸外 切酶的活性,是目前研究 mRNA 降解中頗受重視的基因。本實驗為利用醱酵槽 進行連續式培養 poly(A) 聚合酶單基因突變株 YHC3393,觀察不同生長速率 下, poly(A) 聚合酶對 fumA 與 fumC mRNA 穩定性的影響。

以連續式培養 YHC3393,控制細胞的生長速率,當細胞達穩定狀態,加入 rifampicin 停止 mRNA 的新合成,並在加入 rifampicin 後的不同時間點抽取菌體 總 RNA,取定量總 RNA 進行北方墨點法,所得結果利用 Zero-Dscan 軟體測 定各訊號的強度,並計算 mRNA 半衰期,即可測定大腸桿菌 fumA 與 fumC mRNA 的穩定性。

poly(A) 聚合 酶 突變 後,隨著生長速率 由 0.24/h 上升到 0.72/h , fumA mRNA 半衰期由 1.5 分鐘上升到 3.7 分鐘(表三)。當生長速率由 0.24/h 上升 到 0.96/h,fumC mRNA 半衰期由 2.2 分鐘上升到 4.8 分鐘(表四)。可知當 poly(A) 聚合酶突變後,不論是 fumA 或 fumC mRNA 的穩定性皆隨著生長速 率上升而上升(見圖八、圖九)。

4.2.4 RNase E 與 poly(A) 聚合酶對 fumA 與 fumC mRNA 穩定性之影響 本 實 驗 為 以 連 續 式 培 養 , 觀 察 RNase E 與 poly(A) 聚 合 酶 同 時 缺 失

(LK01)時,不同生長速率下,fumA 與 fumC mRNA 穩定性的變化。

將 LK01 培養於 33℃,並且控制細胞的生長速率,當細菌生長至穩定狀 態,再將溫度升至 44C 、30 分鐘使 rne 基因突變,而且原本 poly(A) 聚合酶 也突變的情況下,加入 rifampicin 停止 mRNA 的新合成,並在加入 rifampicin

後的不同時間點抽取菌體總 RNA,取定量總 RNA 進行北方墨點法,利用 Zero-Dscan 軟體測定實驗結果各訊號的強度,並以 mRNA 半衰期計算公式加 以計算,即可測定大腸桿菌 fumA 與 fumC mRNA 的穩定性。

結果發現,當 RNase E 與 poly(A) 聚合酶都缺失的情況下,隨著生長速率 由 0.24/h 上升到 0.48/h,fumA mRNA 的半衰期由 22 分鐘上升到 55 分鐘

(表三),fumC mRNA 半衰期由 50 分鐘上升到 58 分鐘 (表四)。可知當 RNase E 與 poly(A) 聚合酶雙重突變後,不論是 fumA 或 fumC mRNA 的穩定 性皆隨著生長速率上升而上升(見圖十、圖十一)。

五、討論

5.1 不同碳源對大腸桿菌 fum A 基因表現之影響

本實驗以批次式培養,碳源為 10 mM 葡萄糖或 10 mM 醋酸,利用大腸桿 菌野生株 (K12-W3110)、 N3431 的 isogenic strain(N3433)及 RNase E 單 基因突變株(N3431)探討 fumA 基因在轉錄、轉錄後與轉譯層次的表現。

5.1.1 不同碳源對大腸桿菌 fumA 基因在轉錄層次之影響

在大腸桿菌內葡萄糖主要以主動運輸進入細胞,再經由醣解作用產生能 量。醋酸則以 acety-CoA 的形式進入細胞,進行檸檬酸循環。相同濃度的葡萄 糖與醋酸作為碳源時,葡萄糖可以提供較多的能量與碳原子,因此在批次式培 養時,大腸桿菌在上述兩種不同碳源會有不同的生長速率。

在轉錄層次方面,無論是 K12-W3110、 N3433 或 N3431,細胞以醋酸為 碳源時,fumA mRNA 表現量皆大於以葡萄糖為碳源時 (見圖一)。K12-W3110 以醋酸為碳源時,fumA mRNA 表現量較葡萄糖為碳源時上升 4 倍,在 N3433 中則上升 23 倍,在 N3431 中上升 21 倍。此現象與利用 microarray 的結果相 同 (Oh et al., 2002)。

上述變化可能與 glucose catabolite repression 有關,已知 fumA 基因前端有 CRP binding site,基因的表現會受到 cAMP 所調控。當碳源為葡萄糖時,細胞 內 cAMP 濃度下降,使 fumA 基因轉錄作用下降,故 fumA mRNA 表現量下 降。因此在 cAMP 突變株中,兩種碳源的差異會大幅降低 (Tseng et al., 2001)。

5.1.2 不同碳源對大腸桿菌 fumA 基因在轉錄後層次之影響

在轉錄後層次方面,無論是 K12-W3110、N3433 或 N3431,細胞以葡萄 糖為碳源時,fumA mRNA 的半衰期皆大於以醋酸為碳源時 (見圖二)。當 K12-W3110 以葡萄糖為碳源,fumA mRNA 半衰期較以醋酸為碳源時上升 0.7 倍,在 N3433 中則上升 0.5 倍,在 N3431 中上升 1.6 倍(見表二)。

目前已知影響 mRNA 穩定性的因素有四類:(1)核糖核酸酶,(2)mRNA

綜合上述實驗結果,無論是 K12-W3110、 N3433 或 N3431,在轉錄層次,

以醋酸為碳源 fumA mRNA 表現量皆大於以葡萄糖為碳源。在轉錄後層次,以

表現影響則需以 N3431 的 isogenic strain N3433 作為實驗菌株,故在本實驗中 率 調控 的 基 因有 ribosomal proteins (Dennis and Bremer, 1974)、 glucose 6 phosphate、6-phosphogluconate dehydrogenase (Wolf et al., 1979)、chloramphenicol acetyltransferase、 OmpA (Nilsson et al., 1984)、 succinate dehydrogenase (Park et al., 1995b)、malate dehydrogenase (Park et al., 1995a; Park et al., 1995b) 等。

由 5.1.3 結果可知影響 FumA 蛋白質表現量主要是轉錄後層次的調控,即 mRNA 的穩定性對於蛋白質表現量具有重大的影響。從 5.1.2 中可知影響 mRNA 穩定性有四大因素,所以接下來的實驗將探討影響 fumA 與 fumC mRNA 穩定性因素中的 RNase E 與 poly(A) 聚合酶。

5.3 RNase E 對 fumA 與 fumC mRNA 穩定性之影響

mRNA 的 3’ 端會接上一段 poly(A) tail,使核糖核酸外切酶易於作用。本實驗

mRNA 穩定性大幅提昇,比 RNase E 單基因突變後更穩定,但 poly(A) 聚合

大腸桿菌有 7 個 rRNA gene clusters,其組成方式皆為:promoter - 16S rRNA - tRNA - 23S rRNA - 5S rRNA - terminator。它們進行 processing 的方式也 都相似,先由 RNase III 進行雙股 RNA 的切割,產生 16S rRNA 與 23S rRNA

最終形成成熟的 23S rRNA (Li et al., 1999)。我們所推測參與 rRNA processing 且受 poly(A) 聚合酶調控的酵素為何,須經更進一步的探討。

綜合以上實驗結果可知,將細胞培養在不同碳源下,fumA 基因在轉錄、轉 錄後和轉譯層次方面的表現會有所不同,顯示此三個層次基因表現均受到碳源

的調控,而決定 FumA 蛋白質表現量是轉錄後層次的調控為主。 (Mohanty and Kushner, 1999, 2000)。

除了核糖核酸酶外,核糖體及 mRNA 二級結構對 mRNA 降解也有影響

六、論文圖表

Source or refer enc e

E. coli genetic stock center of Yale. university Dr. Sue Lin-Chao (Kaberdin et al., 1996) Dr. Sue Lin-Chao (Kaberdin et al., 1996) Dr. Sue Lin-Chao (Kaberdin et al., 1996) Dr. Sue Lin-Chao (Kaberdin et al., 1996)

Ge no type a n d re lev ant m ark ers

derived from K-12, F¯IN(rrnD-rrnE)1 lacZ43, relA, spoT1, thi1 lacZ43, relA, spoT1, thi1, rne-3071ts Tcr , lacZ43, relA, spoT1, thi1, pcnB Tcr , lacZ43, relA, spoT1, thi1, rne-3071ts , pcnB

表一、本 實驗所 使 用的大腸 桿菌野 生 株與突變 株 E . coli st rai n K1 2-W 3 1 1 0 N3 4 33 N3 4 31 YH C3 3 93 LK 01

tsTemperature sensitive mutant Tcr Tetracyclin resistance

表二、大腸桿菌 K12 、 N3433 與 N3431 以批次式、不同碳源

(10mM 葡萄糖或醋酸)培養下,對 fumA mRNA 穩定性之 影響。

Unit:min

Chemical half-lives of fumA mRNA

E. coli strain Glc Ace

K12 N3433 N3431

2.5 1.5

3.2 2.1

9.8 3.8

表三、大腸桿菌 N3433、 N3431、 YHC3393 與 LK01 以 2.5mM 葡 萄糖為碳源,在連續式培養下,生長速率對 fumA mRNA 穩定 性之影響。

Unit:min

--:Not determined

2.2 7.4 1.5 22 2.8 16 2.9 55 3.5 21 3.7

-- 5.4 -- --

-- Cell growth

rate k (1/h)

N3433 (wild type)

YHC3393 (pcnB¯ ) N3431

(rne¯ )

LK01 (rne¯pcnB¯ )

0.24 0.48 0.72 0.96

Chemical half-lives of fumA mRNA

表四、大腸桿菌 N3433、 N3431、 YHC3393 與 LK01 以 2.5mM 葡 萄糖為碳源,在連續式培養下,生長速率對 fumC mRNA 穩定 性之影響。

Unit:min

--:Not determined

2.5 17 2.2 50 3.8 21 3.8 58 4.4

--

4.5

-- -- 28

4.8 -- Cell growth

rate k (1/h)

N3433 (wild type)

YHC3393 (pcnB¯ ) N3431

(rne¯ )

LK01 (rne¯pcnB¯ )

0.24 0.48 0.72 0.96

Chemical half-lives of fumC mRNA

(A)

(B)

圖一、大腸桿菌 K12、 N3433 與 N3431,在批次式、不同碳源 (10mM 葡萄糖或醋酸) 培養下,(A) fumA mRNA 表現量 之北方墨點圖。(B)電泳圖。

K12 N3433 N3431 Glc Ace Glc Ace Glc Ace

fumA

23S rRNA 16S rRNA

(A)

K12

(B)

N3433

(C)

N3431

圖二之一、大腸桿菌 K12、 N3433 與 N3431,在批次式、不同碳源 (10mM 葡萄糖或醋酸) 培養下,fumA mRNA 穩定性之北 方墨點圖。(A)K12,(B)N3433,(C)N3431。

Glucose Acetate

0 0.5 1.5 3 5 7 9 12 min 0 0.5 1.5 3 5 7 9 12 min

0 1.5 3 6 9 12 18 24 min 0 1.5 3 6 9 12 18 24 min

(A)

K12

(B)

N3433

(C)

N3431

Glucose Acetate

圖二之二、大腸桿菌 K12、 N3433 與 N3431,在批次式、不同碳源 (10mM 葡萄糖或醋酸) 培養下,fumA mRNA 穩定性之電 泳圖。 (A)K12,(B)N3433,(C)N3431。

23S rRNA 16S rRNA

(A)

(B)

圖三、大腸桿菌 K12、 N3433 與 N3431,在批次式、不同碳源 (10mM 葡萄糖或醋酸) 培養下, (A)FumA 蛋白質表現量之 西方墨點圖。 (B)菌體總蛋白質之電泳圖。

N3431 N3433 K12 Ace Glc Ace Glc Ace Glc

K12 N3433 N3431 Glc Ace Glc Ace Glc Ace

60 kDa

(A)

k = 0.24/h

k = 0.48/h

k = 0.72/h

k = 0.96/h

(B)

k = 0.24/h

k = 0.48/h

k = 0.72/h

k = 0.96/h

圖四、大腸桿菌 N3433 以 2.25mM 葡萄糖為碳源,在不同生長速 率下,(A) fumA mRNA 穩定性之北方墨點圖。(B) 電泳圖。

23S rRNA 16S rRNA

0 0.5 1 1.5 2 3 5 8 min

(A)

k = 0.24/h

k = 0.48/h

k = 0.72/h

(B)

k = 0.24/h

k = 0.48/h

k = 0.72/h

圖五、大腸桿菌 N3433 以 2.25mM 葡萄糖為碳源,在不同生長速 率下,(A) fumC mRNA 穩定性之北方墨點圖。(B) 電泳圖。

23S rRNA 16S rRNA

0 0.5 1 1.5 2 3 5 8 min 0 0.5 1.5 3 5 7 9 12 min

0 0.5 1 1.5 2 3 5 8 min

(A)

k = 0.24/h

k = 0.48/h

k = 0.72/h

(B)

k = 0.24/h

k = 0.48/h

k = 0.72/h

圖六、大腸桿菌 N3431 以 2.25mM 葡萄糖為碳源,在不同生長速 率下,(A) fumA mRNA 穩定性之北方墨點圖。(B)電泳圖。

0 1.5 3 6 9 12 18 24 min

23S rRNA 16S rRNA

(A)

k = 0.24/h

k = 0.48/h

k = 0.96/h

(B)

k = 0.24/h

k = 0.48/h

k = 0.96/h

圖七、大腸桿菌 N3431 以 2.25mM 葡萄糖為碳源,在不同生長速 率下,(A) fumC mRNA 穩定性之北方墨點圖。(B) 電泳圖。

0 1 3 5 8 12 20 30 min 1 3 5 8 12 20 30 min

23S rRNA 16S rRNA

(A)

k = 0.24/h

k = 0.48/h

k = 0.72/h

(B)

k = 0.24/h

k = 0.48/h

k = 0.72/h

圖八、大腸桿菌 YHC3393 以 2.25mM 葡萄糖為碳源,在不同生長 速率下,(A) fumA mRNA 穩定性之北方墨點圖。(B)電泳圖。

0 1.5 3 6 9 12 18 24 min

23S rRNA 16S rRNA

(A)

k = 0.24/h

k = 0.48/h

k = 0.72/h

k = 0.96/h

(B)

k = 0.24/h

k = 0.48/h

k = 0.72/h

k = 0.96/h

0 1.5 3 6 9 12 18 24 min

圖九、大腸桿菌 YHC3393 以 2.25mM 葡萄糖為碳源,在不同生長 速率下,(A) fumC mRNA 穩定性之北方墨點圖。(B) 電泳圖。

23S rRNA 16S rRNA

(A)

k = 0.24/h

k = 0.48/h

(B)

k = 0.24/h

k = 0.48/h

圖十、大腸桿菌 LK01 以 2.25mM 葡萄糖為碳源,在不同生長速率 下,(A) fumA mRNA 穩定性之北方墨點圖。(B)電泳圖。

23S rRNA 16S rRNA

0 5 10 20 30 40 50 60 min

(A)

k = 0.24/h

k = 0.48/h

(B)

k = 0.24/h

k = 0.48/h

圖十一、大腸桿菌 LK01 以 2.25mM 葡萄糖為碳源,在不同生長速 率下,(A) fumC mRNA 穩定性之北方墨點圖。(B)電泳圖。

0 5 10 20 30 40 50 60 min

23S rRNA 16S rRNA

七、參考文獻

1. Arnold, T.E., Yu, J., and Belasco, J.G. (1998) mRNA stabilization by the ompA 5' untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA 4: 319-330.

2. Babitzke, P., and Kushner, S.R. (1991) The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli.

Proc Natl Acad Sci U S A 88: 1-5.

3. Belasco, J. G., G. Brawerman. 1993. Control of messenger RNA stability. p.53-70.

Academic Press, Inc. The United States of America.

4. Bell, P.J., Andrews, S.C., Sivak, M.N., and Guest, J.R. (1989) Nucleotide

sequence of the FNR-regulated fumarase gene (fumB) of Escherichia coli K-12. J Bacteriol 171: 3494-3503.

5. Bernstein, J.A., Khodursky, A.B., Lin, P.H., Lin-Chao, S., and Cohen, S.N. (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99: 9697-9702.

6. Bernstein, J.A., Lin, P.H., Cohen, S.N., and Lin-Chao, S. (2004) Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc Natl Acad Sci U S A 101: 2758-2763.

7. Binnie U., Wong K., McAteer S. and Masters M. (1999) Absence of RNase III alters the pawthway by which RNAI, the antisense inhibitor of ColE1 replication, decays. Microbiology. 145 (Pt11):3089-3100.

8. Blum, E., Py, B., Carpousis, A.J., and Higgins, C.F. (1997) Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol Microbiol 26:

387-398.

9. Bouvet, P., and Belasco, J.G. (1992) Control of RNase E-mediated RNA degradation by 5'-terminal base pairing in E. coli. Nature 360: 488-491.

10. Brawerman, G. (1973) The isolation of RNA from mammalian cells. Methods Cell Biol 7: 1-22.

11. Bremer, H. and P. Dennis. 1987. Modulation of chemical composition and other

parameters of the cell by growth rate. p.1527-1542. In F. C. Neidhardt, J. L.

Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger(ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Vol.

2. American Society for Microbiology, Washington D. C.

12. Cao, G.J., Pogliano, J., and Sarkar, N. (1996) Identification of the coding region for a second poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 93:

11580-11585.

13. Casaregola, S., Jacq, A., Laoudj, D., McGurk, G., Margarson, S., Tempete, M., Norris, V., and Holland, I.B. (1992) Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that

migrates as a 180 kDa protein. J Mol Biol 228: 30-40.

14. Cassio, D., Mathien, Y., and Waller, J.P. (1975) Enhanced level and metabolic regulation of methionyl-transfer ribonucleic acid synthetase in different strains of Escherichia coli K-12. J Bacteriol 123: 580-588.

15. Coburn, G.A., and Mackie, G.A. (1998) Reconstitution of the degradation of the mRNA for ribosomal protein S20 with purified enzymes. J Mol Biol 279:

1061-1074.

16. Cohen, S.N. (1995) Surprises at the 3' end of prokaryotic RNA. Cell 80: 829-832.

17. Cohen, S.N., and McDowall, K.J. (1997) RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23: 1099-1106.

18. Court,D. (1993) RNA processing and degradation by RNase III. In Control of mRNA stability. Belasco, J.G., and Brawerman, G. (eds). New York: Academic Press, pp. 71-116.

19. Dennis, P.P., and Bremer, H. (1974) Differential rate of ribosomal protein synthesis in Escherichia coli B/r. J Mol Biol 84: 407-422.

20. Deutscher, M.P., and Reuven, N.B. (1991) Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 88: 3277-3280.

21. Deutscher, M.P. (1993) Ribonuclease multiplicity, diversity, and complexity. J Biol Chem 268: 13011-13014.

22. Deutscher, M.P., and Li, Z. (2001) Exoribonucleases and their multiple roles in

RNA metabolism. Prog Nucleic Acid Res Mol Biol 66: 67-105.

23. Diwa, A., Bricker, A.L., Jain, C., and Belasco, J.G. (2000) An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. Genes Dev 14: 1249-1260.

24. Donovan, W.P., and Kushner, S.R. (1983) Amplification of ribonuclease II (rnb) activity in Escherichia coli K-12. Nucleic Acids Res 11: 265-275.

25. Donovan, W.P., and Kushner, S.R. (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A 83: 120-124.

26. Dunn, J.J. (1976) RNase III cleavage of single-stranded RNA. Effect of ionic strength on the fideltiy of cleavage. J Biol Chem 251: 3807-3814.

27. Emory, S.A., and Belasco, J.G. (1990) The ompA 5' untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J Bacteriol 172: 4472-4481.

28. Flint, D.H., Emptage, M.H., and Guest, J.R. (1992) Fumarase a from Escherichia coli: purification and characterization as an iron-sulfur cluster containing enzyme.

Biochemistry 31: 10331-10337.

29. Ghora, B.K., and Apirion, D. (1978) Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell 15:

1055-1066.

30. Ghosh, S., and Deutscher, M.P. (1999) Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci U S A 96:

4372-4377.

31. Gottesman, M., Oppenheim, A., and Court, D. (1982) Retroregulation: control of gene expression from sites distal to the gene. Cell 29: 727-728.

32. Grunberg-Manago, M. 1996. Regulation of the expression of aminoacyl tRNA synthetases and translation factors, p. 1432–1457. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M.

Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:

cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

33. Guest, J.R., and Roberts, R.E. (1983) Cloning, mapping, and expression of the

fumarase gene of Escherichia coli K-12. J Bacteriol 153: 588-596.

34. Guest, J.R., Miles, J.S., Roberts, R.E., and Woods, S.A. (1985) The fumarase genes of Escherichia coli: location of the fumB gene and discovery of a new gene (fumC). J Gen Microbiol 131 ( Pt 11): 2971-2984.

35. Guest, J.R. (1992) Oxygen-regulated gene expression in Escherichia coli. The 1992 Marjory Stephenson Prize Lecture. J Gen Microbiol 138 ( Pt 11):

2253-2263.

36. Gupta, R.S., Kasai, T., and Schlessinger, D. (1977) Purification and some novel properties of Escherichia coli RNase II. J Biol Chem 252: 8945-8949.

37. Huang, H., Liao, J., and Cohen, S.N. (1998) Poly(A)- and poly(U)-specific RNA 3' tail shortening by E. coli ribonuclease E. Nature 391: 99-102.

38. Iost, I., and Dreyfus, M. (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14:

3252-3261.

39. Iuchi, S., and Lin, E.C. (1988) arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci U S A 85: 1888-1892.

40. Jain, C., and Belasco, J.G. (1995) RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev 9: 84-96.

41. Jain, C., Deana, A., and Belasco, J.G. (2002) Consequences of RNase E scarcity in Escherichia coli. Mol Microbiol 43: 1053-1064.

42. Jarrige, A.C., Mathy, N., and Portier, C. (2001) PNPase autocontrols its

expression by degrading a double-stranded structure in the pnp mRNA leader.

EMBO J 20: 6845-6855.

43. Jasiecki, J., and Wegrzyn, G. (2003) Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep 4: 172-177.

44. Kaberdin, V.R., Chao, Y.H., and Lin-Chao, S. (1996) RNase E cleaves at multiple sites in bubble regions of RNA I stem loops yielding products that dissociate differentially from the enzyme. J Biol Chem 271: 13103-13109.

45. Keener, J., and M. Nomura. 1996. Regulation of ribosome synthesis, p.1417–1431.

In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B.

Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.

46. Kushner, S.R. (2002) mRNA decay in Escherichia coli comes of age. J Bacteriol 184: 4658-4665; discussion 4657.

47. Li, Z., and Deutscher, M.P. (1996) Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86: 503-512.

48. Li, Z., Pandit, S., and Deutscher, M.P. (1999) Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T. RNA 5: 139-146.

49. Li, Z., and Deutscher, M.P. (2002) RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8: 97-109.

50. Liochev, S.I., and Fridovich, I. (1992) Fumarase C, the stable fumarase of

Escherichia coli, is controlled by the soxRS regulon. Proc Natl Acad Sci U S A 89:

5892-5896.

51. Liou, G.G., Jane, W.N., Cohen, S.N., Lin, N.S., and Lin-Chao, S. (2001) RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc Natl Acad Sci U S A 98: 63-68.

52. Liou, G.G., Chang, H.Y., Lin, C.S., and Lin-Chao, S. (2002) DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. J Biol Chem 277: 41157-41162.

53. Lundberg, U., Nilsson, G., and von Gabain, A. (1988) The differential stability of the Escherichia coli ompA and bla mRNA at various growth rates is not correlated to the efficiency of translation. Gene 72: 141-149.

54. Mackie, G.A. (1998) Ribonuclease E is a 5'-end-dependent endonuclease. Nature 395: 720-723.

55. Matsunaga, J., Simons, E.L., and Simons, R.W. (1996) RNase III autoregulation:

structure and function of rncO, the posttranscriptional "operator". RNA 2:

1228-1240.

56. McDowall, K.J., and Cohen, S.N. (1996) The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J Mol Biol 255: 349-355.

57. Miczak, A., Kaberdin, V.R., Wei, C.L., and Lin-Chao, S. (1996) Proteins

associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci U S A 93: 3865-3869.

58. Miura, A., Krueger, J.H., Itoh, S., de Boer, H.A., and Nomura, M. (1981)

Growth-rate-dependent regulation of ribosome synthesis in E. coli: expression of the lacZ and galK genes fused to ribosomal promoters. Cell 25: 773-782.

59. Mohanty, B.K., and Kushner, S.R. (1999) Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol Microbiol 34: 1094-1108.

60. Mohanty, B.K., and Kushner, S.R. (2000) Polynucleotide phosphorylase, RNase II and RNase E play different roles in the in vivo modulation of polyadenylation in Escherichia coli. Mol Microbiol 36: 982-994.

61. Mohanty, B.K., and Kushner, S.R. (2002) Polyadenylation of Escherichia coli transcripts plays an integral role in regulating intracellular levels of

polynucleotide phosphorylase and RNase E. Mol Microbiol 45: 1315-1324.

62. Mohanty, B.K., and Kushner, S.R. (2003) Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol Microbiol 50: 645-658.

63. Nilsson, G., Belasco, J.G., Cohen, S.N., and von Gabain, A. (1984) Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature 312: 75-77.

64. Nilsson, P., and Uhlin, B.E. (1991) Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE-dependent endonucleolytic processing. Mol Microbiol 5: 1791-1799.

65. Nomura, M., Gourse, R., and Baughman, G. (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53: 75-117.

66. Oh, M.K., Rohlin, L., Kao, K.C., and Liao, J.C. (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277: 13175-13183.

67. O'Hara, E.B., Chekanova, J.A., Ingle, C.A., Kushner, Z.R., Peters, E., and Kushner, S.R. (1995) Polyadenylylation helps regulate mRNA decay in

Escherichia coli. Proc Natl Acad Sci U S A 92: 1807-1811.

68. Ono, M., and Kuwano, M. (1979) A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol 129:

343-357.

69. Ow, M.C., and Kushner, S.R. (2002) Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 16: 1102-1115.

70. Park, S.J., Cotter, P.A., and Gunsalus, R.P. (1995a) Regulation of malate

dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen,

dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen,

相關文件