• 沒有找到結果。

四、 Results

4.5 Metal-oxide RRAM organization

In the results of our metal-oxide RRAM experiments, three materials, including NiOx, TiOx, and WOx, exhibit the resistive switching character. Both NiOx and TiOx

exhibit the bipolar resistive switching behavior and their conduction mechanism follows the Schottky emission.

However, the WOx shows the best RRAM performance in our experiment. Both bipolar and unipolar operation resistive switching character was found in this grade WOx material. Moreover, this material can also be used for one-time-programming (OTP), multi-time-programming (MTP), and multi-level-cell (MLC) application. It also shows the shrinkable potential and the threshold voltage reducing with the shrinking ratio. Moreover, this WOx RRAM shows good reliability performance, including better cycle endurance, good thermal stability, better stress performance, and good data retention. The conduction mechanism of high and low resistance state is variable-range-hopping (VRH) and the minimum-metal-conductivity (MMC), respectively.

104

Chapter 5 : Summary

We have demonstrated the CMOS fully compatible NiOx, TiOx, and WOx based resistance random access memories successfully in this study. All three materials exhibit clear bistable resistive switching character and their resistive characters show the relationship between barrier high and on/off ratio.

Polycrystalline NiOx shows the RRAM performance relationship between thin film and the oxygen content. Its conduction mechanism follows the Schottky emission, and the Schottky emission curve shows the relationship between dielectric constant and oxygen content. According to the calculation of this curve, samples with low oxygen content have a higher dielectric constant. This result explains that samples with low oxygen content need more applied voltage to countervail the inner opposite electric field in the resistive switching process.

Although TiOx follows the Schottky emission, the electric character exhibits the interface contribution and thickness independence relationship. TiOx / SiO2 hybrid system also indicates that the interface contribution and the performance of data retention, cycle endurance, and read disturb can be improve by this hybrid system.

However, the WOx based RRAM shows more potential than others in the non-volatile memory application such as one-time-programming (OTP), multi-times-programming (MTP), multi-level-cell (MLC), shrinkable memory cell, and the unipolar operation. The conduction mechanism of tungsten oxide follows variable-range-hopping (VRH) in high resistance state (HRS) and the electrical behavior of low resistance state (LRS) is close to minimum-metal-conductivity (MMC).

Moreover, the good performance such as high on/off ratio (>1000), good cycle endurance (>1000), high thermal stability (>2000 hrs at 250℃), good read disturb (>1000 sec at 1V), high speed operation (<10ns), small cell size (~9nm), and low power consumption (<10uA) of tungsten oxide based RRAM shows highly potential for the next generation non-volatile memory applications.

According to the results of this study, all three NiOx, TiOx and WOx are CMOS fully compatible materials without contamination risk. For the overall comparison of RRAM functionality, NiOx or TiOx cannot provide better characteristics than WOx. The WOx based RRAM could provide high potential for several commercial applications on electron devices, such as OTP, MTP, MLC, and unipolar operation as well. Therefore, we believe it is suitable for application in the next generation non-volatile memory device.

105

References

[1]. Yiran Chen, Wei Tian, Hai Li, Xiaobin Wang and Wenxhong Zhu, “PCMO Device With High Switching Stability”, IEEE Electron Device Lett., vol.31, no.8, p.866,Aug. (2010).

[2]. S. Q. Liu, N. J. Wu and A. Ignatiev, ”Electric-pulse-induced reversible resistance change effect in magnetoresistive film”, Appl. Phys. Lett., vol.76, p.2749, (2000).

[3]. S. T. Hsu, W. W. Zhung, T. K. Li, W. Pan, A. Ignative, C. Papagianni and N. J.

Wu, “RRAM Switching Mechanism”, Symposium NonVolatile Memory Technology, p.121, (2005).

[4]. W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R.

Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K.

Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu and A. Ignatie, “Novell Crossal

Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory”, International Electron Devices Meeting (IEDM), p.193, (2002).

[5]. R. C. G. Naber, B. de Boer, P. W. Blom and D. M. de Leeuw, “Low-voltage polymer field-effect transistor for nonvolatile memories” Appl. Phys. Lett., vol.87, p.203509, (2005).

[6]. Ronald C. G. Naber, Cristina Tanase, Paul W. M. Blom, Gerwin H. Gelinck, Albert W. Marsman, Fred J. Touwslager, Aepas Setayesh and Dago M. De Leeuw,

“High-performance solution-processed polymer ferroelectric field-effect transistors” Nature Mater., 4, p.243, (2005).

[7]. Ricky J. Tseng, Jiaxing Huang, Jianyong Ouyang, Richard B. Kaner and Yang Yang, “Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory” Nano Lett., vol.5, p.1077, (2005).

[8]. Qi-Dan Ling, Siew-Lay Lim, Yan Song, Chun-Xiang Zhu, Daniel Siu-Hhung Chan, En-Tang Kang and Koon-Gee Neoh, “Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin Film of

Poly(N-vinylcarbazole) with Covalently Bonded C60+” J. Am. Chem. Soc. vol.23, p.312, (2007).

[9]. Qidan Ling, Yan Song, Shi J. Ding, Chunxiang Zhu, Daniel S. H. Chan, Dim-Lee Kwong, En-Tang Kang, and Koon-Gee Neoh, “Non-Volatile Polymer Memory Device Based on a Novel Copolymer of N-Vinylcarbazole and Eu-Complexed Vinylbenzoate”, Adv. Mater., vol.17, p.455-459, (2005).

[10]. Michael Kund, Gerhard Beitel, Cay-Uwe Pinnow, Thmas Rohr, Jorg Schumann, Ralf Symanczyk, Klaus-Dieter Ufert and Gerhard Muller, “Conductive bridging RAM (CBRAM) An emerging non-volatile memory technology scalable to sub 20nm”, International Electron Devices Meeting (IEDM), p.754, (2005).

106

[11]. Stefan Dietruch, Michael Angerbauer, Milena Ivanov, Dietmer Gogl,

Hoenigshmid, Michael Kund, Corvin Liaw, Michael Markert, Ralf Symanczyk, Laith Altimime, Serge Bournat, and Gerhard Mueller, “A Nonvolatile 2-Mbit CBRAM Memory Core Fraturing Advanced Read and Program Control”, IEEE J.

Sol. Sat. Cir., vol.42, p.839, (2007).

[12]. Chakravarthy Gopalan, Yi Ma, Tony Gallo, Janet Wang, Ed Runnion, Juan Saenz, Foroozan Koushan, and Shane Hollmer, “Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process”, International Memory Workshop (IMW), (2010).

[13]. A. Beck, J. G. Bednorz, Ch Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications” Appl. Phys. Lett., vol.77, p139, (2000).

[14]. S. B. Lee, A. Kim, J. S. Lee, S. H. Chang, H. K. Yoo, T. W. Noh, B. Kahng, M. –J.

Lee, C. J. Kim, and B. S. Kang, “Reduction in high reset currents in unipolar resistance switching Pt/SrTiOx/Pt capacitors using acceptor doping” Appl. Phys.

Lett., vol.97, p093505, (2010).

[15]. M. Copel, J. D. Baniecki, P. R. Duncombe, D. Kotecki, R. Laibowitz, D. A.

Neumayer, and T. M. Shaw, “Compensation doping of Ba0.7Sr0.3TiO3 thin films”

Appl. Phys. Lett., vol.73, p1832, (1998).

[16]. M. Meier, R. Rosezin, S. Gilles, A. Rudiger, C. Kugeler and R. Waser, “A multilayer RRAM nanoarchitecture with resistively switching Ag-doped spin-on glass”, Ultimate Integration of Silicon (ULIS), p.143, (2009).

[17]. Haowei Zhang, Bin Gao, Shimeng Yu, Lin Lai, Lang Zeng, Bing Sun, Lifeng Liu, Xiaoyan Liu, Jing Lu, Ruqi Han and Jinfeng Kang, ”Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study”

Simulation of Semiconductor Processes and Devices (SISPAD), (2009).

[18]. Haowei Zhang, Bin Gao, Bing Sun, Guopeng Chen, Lang Zeng, Lifeng Liu, Xiaoyan Liu, Jing Lu, Ruqi Han, Jinfeng Kang, and Bin Yu, “Ionic doping effect in ZrO2 resistive switching memory” Appl. Phys. Lett., vol.96, p123502, (2010).

[19]. Hyunjun Sim, Hyejung Choi, Dongsoo Lee, Man Chang, Dooho Choi, Yunik Son, Eun-Hong Lee, Wonjoo Kim, Yoondong Park, In-Kyeong Yoo and Hyunsang Hwang, “Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application”, International Electron Devices Meeting (IEDM), p.758, (2005).

[20]. ChiaHua Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, Rich Liu, and C. Y. Lu, “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability”, Symposium of VLSI Technology, p.228, (2007).

107

[21]. J. C. Bruyeye and B. K. Chakraverty, “Switching and negative resistance in thin films of nickel oxide”, Appl. Phys. Lett., vol.16, p40, (1970).

[22]. F. Argall, “Switching phenomena in titanium oxide thin films”, Solid-State Electron. vol.11, p.535, (1968).

[23]. C. H. Cheng, Albert Chin, and F. S. Yeh, “Novel Ultra-low power RRAM with good endurance and retention”, Symposium of VLSI Technology, p.85, (2010).

[24]. Wei-Chih Chien, Erh-Kun Lai, Kuo-Pin Chang, Chien-Hung Yeh, Ming-Hsiang Hsueh, Yeong-Der Yao, Tuung Luoh, Sheng-Hui Hsieh, T. H. Yang, K. C. Chen, Yi-Chou Chen, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “Unipolar Switching Characteristics for Self-Aligned WOx Resistance RAM (R-RAM)”, International Symposium on VLSI Technology Systems and Applications (VLSI-TSA), p.144, (2008).

[25]. W. R. Hiatt and T. W. Hickmott., “Bistable switching in niobium oxide diodes”

Appl. Phys. Lett., vol,6, p106, (1965).

[26]. K. L. Chopra, “Avalanche-Induced Negative Resistance Thin Oxide Films”, J.

Appl. Phys., vol.36, p.184, (1965).

[27]. ChiaHua Ho, Cho-Lun Hsu, Chun-Chi Chen, Jan-Tsai Liu, Cheng-San Wu, Chien-Chao Huang, Chenming Hu, and Fu-Liang Yang, “9nm Half-Pitch Functional Resistive Memory Cell with <1uA Programming Current Using Thermally Oxidized Sub-Stoichiometric WOx Film”, International Electron Devices Meeting (IEDM), 19.1, (2010).

[28]. W. C. Chien, Y. C. Chen, K. P. Chang, E. K. Lai, Y. D. Yao, P, Lin, J. Gong, S. C.

Tsai, S. H. Hsieh, C. F. Chen, K. Y. Hsieh, R. Liu, and Chih-Yuan Lu,

“Multi-Level Operation of Fully CMOS Compatible WOx Resistive Random Access Memory (RRAM)”, International Memory Workshop (IMW), (2009).

[29]. ChiaHua Ho, Ming-Daou Lee, Chen-Ling Pan, Erh-Kun Lai, Yeong- Der Yao, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “A 2-bit/cell, Maskless, Self-Aligned Resistance Memory with Thermal Stability”, International

Symposium on VLSI Technology Systems and Applications (VLSI-TSA), (2007).

[30]. K. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Solid-State Device Research Conference, vol.14, p.629, (1967).

[31]. Masukoa;Fujio, Iizuka; Hisakazu, “Semiconductor memory device and method for manufacturing the same”, US4531203

[32]. Yasuo Itoh, Masaki Momodom, Riichiro Shirota, Yoshihisa Iwata, Ryozo

Nakayama, Ryouhei Kirisawa, Tomoharu Tanaka, Koichi Toita, Satoshi Inoue and Fujio Masuoka, “An Experimental 4Mb CMOS EEPROM with a NAND

Structured Cell”, International Solid-State Circuits Conference (ISSCC), p.134, (1989).

108

[33]. Vicent Cros, Albert Fert, Pierre Seneor and Fredencric Petroff, “The 2007 Nobel Prize in Physics: Albert Fert and Petter Grunberg”, The Spin Progress in

Mathematical Physics, vol.55, p.147, (2009).

[34]. T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction”, J. Magn. Magn. Mater., vol.139, p.L231 (1995).

[35]. J. F. Gibbons, and W. E. Beadle, ”Switching properties of NiO films” Solid-State Electron, vol.7, p.785, (1964).

[36]. W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H.

Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. T. Hsieh, R. Liu, and Chih-Yuan Lu, “Unipolar Switching Behavior of WOx RRAM”, IEEE Electron Device Lett., vol.31, no.2, p126, (2010).

[37]. Y. H. Tseng, C. E. Huang, C. –H. Kuo, Y. –D Chih, Y. C. King, and C. J. Lin, “A New High-Density and Ultrasmall-Cell-Size Contact RRAM (CR-RAM) With Fully CMOS-Logic-Compatible Technology and Circuits”, IEEE Trans. on Electron Devices, vol.58, p.53, (2011).

[38]. Keiji Hosotani, Seong-Geon Park, Yoshio Nishi, “Electric field dependent switching and degradation of Resistance Random Access Memory”, IEEE International Integrated Reliability Workshop (IRW) Final Report, p.11, (2009) [39]. Sungho Kim, Hanul Moon, Dipti Gupta, Seunghyup Yoo, and Yang-Kyu Choi,

“Resistive Switching Characteristics of Sol-Gel Zinc Oxide Films for Flexible Memory Applications”, IEEE Trans. on Electron Devices, vol.56, p.696, (2009).

[40]. K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A.

Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V”, International Electron Devices Meeting (IEDM), p.767, (2007).

[41]. X. P. Wang, Y. Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken, and D. J. Wouters, “Effect of anodic interface layers on the unipolar switching of HfO2-based resistive RAM”, International Symposium on VLSI Technology Systems and Applications (VLSI-TSA), p.140, (2010).

[42]. W. C. Chien, Y. R. Chen, Y. C. Chen, Alfred T. H. Chuang, F. M. Lee, Y. Y. Lin, E.

K. Lai, Y. H. Shih, K. Y. Hsieh, and Chih-Yuan Lu, “A forming-free WOx

resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability”, International Electron Devices Meeting (IEDM), 19.2, (2010).

[43]. B. Chen, B. Gao, S. W. Sheng, L. F. Liu, X. Y. Liu, Y. S. Chen, Y. Wang, R. Q.

Han, B. Yu, and J. F. Kang, “A Novel Operation Scheme for Oxide-Based Resistive-Switching Memory Devices to Achieve Controlled Switching Behaviors”, IEEE Electron Device Lett., vol.32, no.3, p282, (2011).

109

[44]. Jubong Park, Minseok Jo, Seungjae Jung, Joonmyoung Lee, Wootae Lee, Seonghyun Kim, Sangsu Park, Jungho Shin, and Hyunsang Hwang, “New Set/Reset Scheme for Excellent Uniformity in Bipolar Resistive Memory”, IEEE Electron Device Lett., vol.32, no.3, p228, (2011).

[45]. M. D. Lee, C. H. Ho, C. K. Lo, T. Y. Peng, Y. D. Yao, “Effect of Oxygen Concentration on Characteristics of NiO-Based Resistance Random Access Memory”, IEEE Trans. Magn., vol.43, p.939, (2007).

[46]. Linkai Wang, Ze Jia, and Tianling Ren, “Bipolar switching analysis and negative resistance phenomenon in TiOx-based devices”, IEEE International Conference of Electron Devices and Solid-Sate Circuits (EDSSC), (2010).

[47]. Ugo Russo, Carlo Cagli, “Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices”, IEEE Trans. on Electron Devices, vol.56, p.186, (2009).

[48]. U. Russo, D. Ielmini, C. Cagli, A. Lacaita, S. Spiga, C. Wiemer, M. Perego, and Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM”, International Electron Devices Meeting (IEDM), p.775, (2007).

[49]. Jung Won Seo, Jae-Woo Park, Keong Su Lim, Ji-Hwan Tang, and Sang Jung Kang, “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching” Appl. Phys. Lett., vol.93, p223505, (2008).

[50]. Shimeng Yu, Ximeng Guan, and H. –S. Philip Wong, “Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model” Appl.

Phys. Lett., vol.99, p063507, (2011).

[51]. Kyung-Chang Ryoo, Jeong-Hoon Oh, Hongsik Jeong, and Byung-Gook Park,

“Irregular resistive switching characteristics and its mechanism based NiO unipolar switching resistive random access memory (RRAM)”, Silicon Nanoelectronics Workshop (SNW), (2010).

[52]. C. Rossel, G. I. Meijer, D. Bremaud, and D. Widmer, “Electrical current

distribution across a metal-insulator-metal structure during bistable switching”, J.

Appl. Phys., vol.90, p.2892, (2001).

[53]. J. Y. Son, and Y. –H Shin, “Direct observation of conducting filaments on

resistive switching of NiO thin films” Appl. Phys. Lett., vol.92, p222106, (2008).

[54]. Bin Gao, Bing Sun, Haowei Zhang, Lifeng Liu, Xiaoyan Liu, Ruqi Han, Jinfeng Kang, and Bin Yu, “Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory”, IEEE Electron Device Lett., vol.30, no.12, p1326, (2009).

[55]. Nuo Xu, Lifeng Liu, Xiao Sun, Xiaoyan Liu, Dedong Han, Yi Wang, Ruqi Han, Jinfeng Kang, and Bin Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories” Appl.

Phys. Lett., vol.92, p232112, (2008).

110

[56]. Daniele Ielmini, “Reset-Set Instability in Unipolar Resistive-Switching Memory”, IEEE Electron Device Lett., vol.31, no.6, p552, (2010).

[57]. Sungho Kim, and Yang-Kyu Choi, “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al Structure RRAM”, IEEE Trans. on Electron Devices, vol.56, p.3049, (2009).

[58]. B. Chen, Q. Y. Jun, B. Gao, F. F. Zhang, K. L. Wei, Y. S. Chen, L. F. Liu, X. Y.

Liu, J. F. Kang, and R. Q. Han, “A compact model of resistive switching devices”, IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), p.1829, (2010).

[59]. Ugo Russo, Carlo Cagli, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices”, IEEE Trans. on Electron Devices, vol.56, p.193, (2009).

[60]. Kyung-Chang Ryoo, Jeong-Hoon Oh, Sung-hun Jung, and Byung-Gook Park,

“Resistive switching characteristics of novel Al-inserted resistive random access memory (RRAM)”, IEEE Nanotechnology Materials and Devices Conference (NMDC), p.356, (2010).

[61]. O. Ginez, J. –M. Portal, and Ch. Muller, “Design and Test Challenges in Resistive Switching RAM (ReRAM): An Electrical Model for Defect Injections”, IEEE European Test Symposium, p.61, (2009).

[62]. F. N. Mott, et al., Electronic Processes in Nan-Crystalline Materials, Oxford:

Clarendon Press, pp 28-33, P.37, (1979).

[63]. Juraj Racko, Mlroslav Mlkolasek, Ralf Granzner, Juraj Breza, Danlel Donoval, Alena Grmanova, Ladlslav Harmatha, Frank Schwlerz, and Karol Frohlich,

“Trap-assisted tunneling current in MIM structure”, Central European Journal of Physics, 230, (2011)

[64]. D. Lee, D. –j. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.

Seo, S. Heo, M. Jo, D. –K. Hwang, H. K. Park, M. Chang, and M. Hasan,

“Excellent uniformity and reproducible resistive switching characteristics of doped binary metal oxide for non-volatile resistance memory applications”, IEDM Tech. Dig., p.796 (2006).

[65]. D. S. Jeong, H. Schroeder, and R. Waser, “Impedance spectroscopy of TiO2 thin films switching resistive switching” Appl. Phys. Lett. vol.89, p082909, (2006).

[66]. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S.

Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition”, J. Appl. Phys.

vol.98, p.033715, (2005).

[67]. A. Sawa, T. Fuji, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3

interface” Appl. Phys. Lett. vol.85, p4073, (2004).

111

[68]. M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N.

Awaya, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching” Appl. Phys. Lett. vol.89, p223509, (2006).

[69]. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “Nonvolatile Memory with Multilevel Switching: A Basic Model”, Phys. Rev. Lett. vol.92, p.178302, (2004).

[70]. D. C. Kim, S. Seo, S. E. Ahn, D. –S. Suh, M. J. Lee, B. –H. Park, I. K. Yoo, I. G.

Baek, H. –J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U. –I. Chung, J. T.

Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films” Appl. Phys. Lett. vol.88, p202102, (2006).

[71]. W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar Nonvolatile

Resistive Switching in Cu Doped ZrO2”, IEEE Electron Device Lett., vol.29, no.5, p434, (2008).

[72]. Ugo Russo, Carlo Cagli, and Andrea L. Lacaita, “Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices”, IEEE Trans. on Electron Devices, vol.56, p.186, (2009).

[73]. R. Fors, S. I. Khartsev, and A. M. Grishin, “Giant resistance switching in

metal-insulator-magnetite junctions: Evidence for Mott transition”, Phys. Rev. B, vol.71, p.045305, (2005).

[74]. E. Y. Tsymbal and H. Kohlstedt, “Tunneling Across a Ferroelectric”, Science, vol.313, p.181, (2006).

[75]. B. Gao, H. W. Zhang, S. Yu, B. Sun, L. F. Liu, X. Y. Liu, Y. Wang, R. Q. Han, J. F.

Kang, B. Yu, and Y. Y. Wang, “Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology”, Symposium of VLSI Technology, p.30, (2009).

[76]. K. Kinoshita, T. Tamura, H. Aso, H. Noshiro, C. Yoshida, M. Aoki, Y. Sugiyama, and H. Tanaka, “New Model Proposed for Switching Mechanism of ReRAM”, Non-Volatile Semiconductor Memory Workshop (NVSMW), p.84, (2006).

[77]. D. Ielmini, F. Nardi, C. Cagli, and A. L. Lacaita, ”Trade-off between data

retention and reset in NiO RRAMs”, International Reliability Physics Symposium (IRPS), p.620, (2010).

[78]. X. A. Tran, H. Y. Yu, Y. C. Yeo, L. Wu, W. J. Liu, Z. R. Wang, Z. Fanf, K. L. Pey, X. W. Sun, A. Y. Du, B. Y. Nguyen, and M. F. Li, “A High-Yield HfOx-Based Unipolar Resistive RAM Employing Ni Electrode Compatible With Si-Diode Selector for Crossbar Integration”, IEEE Electron Device Lett., vol.32, no.3, p396, (2011).

[79]. Jong Yeog Son, Young-Han Shin, Hyungjun Kim, and Hyun M. Jang, “NiO Resistive Random Access Memory Nanocapacitor Array on Graphene”, ACS Nano, vol.4, p.2655, (2010).

112

[80]. S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H.

Jang, M. Y. Kim, D. –W. Kim, and C U. Jung, “Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors” Appl. Phys. Lett., vol.92, p183507 (2008).

[81]. J. Y. Son, and Y. –H. Shin, “Direct observation of conducting filament on

resistive switching of NiO thin films” Appl. Phys. Lett., vol.92, p222106, (2008).

[82]. Daniele Ielmini, Carlo Cagli, and Andrea L. Lacaita, v.31, no.4, 353, (2010).

[83]. I. G. Beak, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. –S. Suh, J. C. Park, S. O.

Park, H. S. Kim, I. K. Yoo, U-In Chung, and J. T. Moon, “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulse”, International Electron Devices Meeting (IEDM), p.587, (2004).

[84]. Kyung-Chang Ryoo, Silicon Nanoelectronics Workshop (SNW), the same with ref.51.

[85]. Y. S. Chen, B. Chen, B. Gao, F. F. Zhang, Y. J. Qiu, G. J. Lian, L. F. Liu, X. Y. Liu, R. Q. Han, and J. F. Kang, “Anticrosstalk characteristics correlated with the set process for α-Fe2O3/Nb-SrTiO3 stack-based resistive switching device” Appl.

Phys. Lett., vol.97, p262112, (2010).

[86]. B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu, and Y. Y. Wang, “Oxide-based RRAM switching mechanism: Anew

ion-transport-recombination model”, International Electron Devices Meeting (IEDM), 22.8, (2008).

[87]. Jubong Park, K. P. Biju, Seungjae Jung, Wootae Lee, Joonmyoung Lee, Seonghyun Kim, Sangsu Park, Jungho Shin, and Hyunsang Hwang, “Multibit Operation of TiOx-Based ReRAM by Schottky Barrier Height Engineering”, IEEE Electron Device Lett., vol.32, no.4, p476,(2011).

[88]. W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yoa, P. Lin, S. F. Horng, J. Gong, T. H.

Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, and Chih-Yuan Lu, “Unipolar Switching Behaviors of WOx RRAM”, IEEE Electron Device Lett., vol.31, no.2, p126, (2010).

[89]. Erh-Kun Lai, Wei-Chih Chien, Yi-Chou Chen, Tian-Jue Hong, Yu-Yu Lin, Kuo-Pin Chang, Yeong-Der Yao, Pang Lin, Sheng-Fu Horng, Jeng Gong,

Shih-Chang Tsai, Ching-Hsiung Lee, Sheng-Hui Hsieh, Chun-Fu Chen, Yen-Hao Shih, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “Tungsten Oxide Resistive Memory Using Rapid Thermal Oxidation of Tungsten Plugs”, Japanese J. of Appl.

Phys., vol.49, p.04DD17, (2010).

113

[90]. Seonghyun Kim, Kuyyadi P. Biju, Minseok Jo, Seungjae Jung, Jubong Park, Joonmyoung Lee, Wootae Lee, Jungho Shin, Sangsu Park, and Hyunsang Hwang,

“Effect of Scaling WOx-Based RRAMs on Their Resistive Switching Characteristics”, IEEE Electron Device Lett., vol.32, no.5, p671, (2011).

[91]. W. C. Chien, Y. C. Chen, E. K. Lai, F. M. Lee, Y. Y. Lin, Alfred T. H. Chuang, K.

P. Chang, Y. D. Tao, T. H. Chou, H. M. Lin, M. H. Lee, Y. H. Shih, K. Y. Hsieh, Chih-Yuan Lu, Appl. Phys. A, 102, 901, (2011).

114

Publication List Paper :

[1]. M. D. Lee, C. K. Lo, T. Y. Peng, S. Y. Chen, Y. D. Yao, “Endurance study of switching characteristics in NiO films”, J. Magn. Magn. Mater. vol.310, p.e1030, (2007).

[2]. M. D. Lee, C. H. Ho, C. K. Lo, T. Y. Peng, Y. D. Yao, “Effect of Oxygen Concentration on Characteristics of NiO-Based Resistance Random Access Memory”, IEEE Trans. Magn., vol.43, no.2, 939, (2007).

[3]. M. D. Lee, C. H. Ho, Y. D. Yao, “CMOS Fully Compatible Embedded Non-Volatile Memory System With TiO2-SiO2 Hybrid Resistive-Switching Material”, IEEE Trans. Magn., vol.47, p.653, (2011).

[4]. M. D. Lee, C. K. Lo, T. Y. Peng, K. L. Yau, S. Y. Chen, Y. D. Yao, “Epitaxial layer of MgO (001) grown on Si (001) wafer by e-beam evaporation”, J. Magn. Magn.

Mater. vol.304, p.e44, (2006).

[5]. M. D. Lee, N. V. Nong, N. P. Thuy, Y. D. Yao, S. F. Lee, Y. Liou, Y. Y. Chen, C. R.

Wang, “Temperature dependence of magnetic properties in Ni-Mn-Ga shape memory alloys”, phys. stat. sol. (c), vol.1, p.3579, (2004).

[6]. C. H. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, R. Liu, C. Y. Lu,

[6]. C. H. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, R. Liu, C. Y. Lu,