• 沒有找到結果。

n

+

poly

1.12eV 3.1eV

4.8eV 6.9eV

1.88eV 0.24eV

SiON Si substrate HfSiON

n

+

poly

Fig.4.21 The band diagram during negative stress.

71

Chapter 5 Conclusion

Alternative gate oxide material is a trend for the scaling of oxide thickness in CMOS device technology. Hafnium based dielectrics are among the most promise candidates as a replacement for SiO2 in conventional CMOS process. Interfacial layer and halo implant are mandatory for high-k and sub-65nm CMOS devices.

.In this dissertation, the basic principle of the CP measurement has been introduced briefly, and the trap density at different depths could be measured by different frequencies. Subsequently, the variation of the traps is investigated using this method after the device is stressed by positive and negative voltage. It has been shown that the traps created by the positive stress are mainly generated by the capture of electrons into the traps in the high-k dielectric and thus produces the defects.

Nevertheless, the mechanism of trap generation under the negative stress is more complicated. The device is in its accumulation state under a negative voltage, and the holes in the channel would be captured by the defects located at the Si/IL interface, which may damage the device. The gate poly-Si, which is n-type, would cause the electrons to be trapped into the dielectric due to the negative bias at the gate side, and more traps are created inside the device. For the electrons are captured in the dielectric under the positive stress, the electrical properties changed is essentially about the variation of the threshold voltage. However, in the situation of the negative stress, the electrons would be trapped in the dielectric, and besides the holes would be captured at the Si/IL interface. Because where the holes are trapped is closer to the channel, the variation of electrical properties would be much more obvious, and this could be seen by the degradation of the subthreshold swing under negative stress and the change of Gm,max during positive and negative stress. The result is not found in related researches so far,

72

and it is the primary contribution of this thesis.

73

References

[1] Y. Kim, G. Gebara, M. Freiler, J. Barnett, D. Riley, J. Chen, K. Torres, and J. Lim, “Conventional n-channel MOSFET devices using single layer HfO2 and ZrO2 as high-k gate dielectrics with polysilicon gate electrode, ” in IEDM Tech. Dig., pp. 455-458, 2001.

[2] Hobbs, C. Tseng, H. Reid, K. Taylor, B. Dip, L. Hebert, L. Garcia and R. Hegde, “80 nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 651-654, 2001.

[3] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge Trapping in Ultra-thin Hafnium Oxide,” IEEE Elec. Dev. Lett., Vol. 23, no. 10, pp.597-599, 2002

[4] A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H. E. Meas, and U. Schwalke, “Origin of the Threshold Voltage Instability in SiO2/HfO2 Dual Layer Gate Dielectrics,” IEEE Elec. Dev. Lett., Vol. 24, no. 2, pp.87-89, 2003.

[5] K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax and J.W.

Maes, “The mechanism of mobility degradation in MISFETs with Al2O3 gate dielectric”, in VLSI Tech. Dig., pp. 188-189, 2002.

[6] R. E. Paulsen and M. H. White, “Theory and application of charge pumping for the characterization of Si-SiO2 interface and near-interface oxide traps,” IEEE Trans. Electron Devices, vol. 41, No. 7, pp. 1213-1216, Jul. 1994.

[7] R.E. Paulsen, R.R. Siergiej, M.L. French, and M.H. White, "Observation of Near-Interface Oxide Traps With the Charge Pumping Technique," IEEE Electron Device Lett, Vol. 13, no 12, pp.627-629, Dec. 1992.

74

[8] S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, “Influence of Al2O3 dielectrics on the trap-depth profiles in MOS devices investigated by the charge-pumping method,” IEEE Trans.

Electron Devices, vol. 51, no. 12, pp. 2252–2255, Dec. 2004.

[9] C. Y. Lu, K. S. Chang-Liao, P. H. Tsai, and T. K. Wang, “Depth profiling of border traps in MOSFET with high-k gate dielectric by charge-pumping technique,” IEEE Electron Device Lett., vol. 27, no. 10, pp. 859–862, Oct. 2006.

[10] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Kecrsmaecker, “A Reliable Approach to Charge-Pumping Measurements in MOS Transistors,” IEEE Trans. Electron Devices, Vol. ED-31, pp. 42-53, 1984.

[11] M. Koyama, H. Satake, M. Koike, T. Ino, M. Suzuki, R. Iijima, Y. Kamimuta, A. Takashima,

“Degradation Mechanism of HfSiON Gate Insulator and Effect of Nitrogen Composition on the Statistical Distribution of the Breakdown,” in IEDM Tech. Dig., pp. 931-934, 2003.

[12] P. Heremans, J. Witters, G. Groeseneken and H. E. Maes, “Analysis of the Charge Pumping Technique and Its Application for the Evaluation of the MOSFET Degradation,” IEEE Tran.

Electron Devices, vol.36, no.7, pp.1318–1335, Dec. 2004.

[13] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Kecrsmaecker, “A Reliable Approach to Charge-Pumping Measurements in MOS Transistors,” IEEE Trans. Electron Devices, Vol. ED-31, pp. 42-53, 1984.

[14] S. S. Chung, S. J. Chen, C. K. Yang, S. M. Cheng, S. H Lin, Y. C. Sheng, H. S. Lin, K. T. Hung, D. Y. Wu, T. R. Yew, S. C. Chien, F. T. Liou, and F. Wen, “A Novel and Direct Determination of the Interface Traps in Sub-100 nm CMOS Devices with Direct Tunneling Regime (12/spl sim/16 A) Gate Oxide,” in Symposium on VLSI Tech., pp. 11-13, 2002.

75

[15] R. Degraeve, A. Kerber, Ph. Roussel, E. Cartier, T. Kauerauf, L. Pantisano, and G. Groeseneken,

“Effect of Bulk Trap Density on HfO2 Reliability and Yield,” in IEDM Tech. Dig., pp. 935-938, 2003.

[16] K. Onishi, R. Choi, C. S. Kang, H. J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A. Krishnan, M. S.

Akbar, and J. C. Lee, “Bias-temperature instabilities of poly-silicon gate HfO2 MOSFETs,”IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1517-1524, Jun. 2003.

[17] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T. Kauerauf, G. Groeseneken, H.

E. Maes, and U. Schwalke, “Characterization of the Vt-instability in SiO2 / HfO2 date dielectrics,”

IEEE Intl. Rel. Phys. Symp.,2003, pp. 41-45.

[18] R. Degraeve, F. Crupi, D. H. Kwak, and G. Groeseneken, “On the defect generation and low voltage extrapolation of QBD in SiO2 / HfO2 stacks,”IEEE VLSI Tech. Dig., 2004, pp. 140-141.

[19] F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken, “Correlation between stress-induced leakage current (SILC) and the HfO2 bulk trap density in a SiO2 / HfO2 stack,”

IEEE Intl. Rel. Phys. Symp., 2004, pp. 181-187.

[20] A. Morioka, H. Watanabe, M. Miyamura, T. Tatsumi, M. Saitoh, T. Ogura, T. Iwamoto, T.

Ikarashi, Y. Saito, Y. Okada, H. Watanabe, Y. Mochizuki and T. Mogami, “High mobility MISFET with low trapped charge in HfSiO films, ”IEEE Symp. VLSI Tech. Dig., 2003, pp.

165-166.

[21] T. Iwamoto, T. Ogura, M. Terai, H. Watanabe, H. Watanabe, N. Ikarashi, M. Miyamra, T. Tatsumi, M. saitoh, A. Morioka, K. Watanabe, Y. Saito, Y. Yabe, T. Ikarashi, K. Masuzaki, Y. Mochizuki and T. Mogami, “A higly manufacturable low power and high speed HfSiO CMOSFET with dual poly-Si gate electrodes,”IEEE IEDM Tech. Dig., 2003, p. 639-642.

76

[22] L. Pnatisano, E. Cartier, A. Kerber, R. Degraeve, M. Lorenzini, M. Rosmeulen, G. Groeseneken, and H. E. Maes, “Dynamics of threshold voltage instability in stacked high-k dielectrics: role of the interfacial oxide,” IEEE Symp. VLSI Tech. Dig., 2003, pp. 163-164.

[23] C. E.Weintraub, E. Vogel, J. R. Hauser, N. Yang, V. Misra, J. J. Wortman, J. Ganem, and P.

Masson, “Study of low-frequency charge pumping on thin stacked dielectrics,” IEEE Trans.

Electron Devices, vol. 48, no. 12, pp. 2754–2762, Dec. 2001.

[24] D. Bauza and Y. Maneglia, “In-depth exploration of Si-SiO2 interface traps in MOS transistors using the charge pumping technique,” IEEE Trans. Electron Devices, vol. 44, no. 12, pp.

2262–2266, Dec. 1997.

[25] G. V. den Bosch, G. Groeseneken, P. Heremans, and H. Maes, “Spectroscopic charge pumping: A new procedure for measuring interface trap distributions in MOS transistors,” IEEE Trans.

Electron Devices, vol. 38, no. 8, pp. 1820–1831, Aug. 1991.

[26] F. P. Heimann and G. Warfield, “The effect of oxide traps on MOS capacitance,” IEEE Trans.

Electron Devices, vol. ED-12, no. 4, pp. 167–178, Apr 1964.

[27] E. Simoen, A. Mercha, L. Pantisano, C. Claeys, and E. Young, “Lowfrequency noise behavior of SiO2 − HfO2 dual-layer gate dielectric nMOSFETs with different interfacial oxide thickness,”

IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 780–784, May 2004.

[28] A. Kerber, E. Cartier, R. Degraeve, P. J. Roussel, L. Pantisano, T. Kauerauf, G. Groeseneken, H. E.

Maes, and U. Schwalke, “Charge trapping and dielectric realibility of SiO2 − Al2O3 gate stacks with TiN electrodes,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1261–1269, May. 2003.

[29] K. Uwasawa, T. Yamamoto, and T. Mogami, “A new degradation mode of scaled p+ polysilicon gate p-MOSFETs induced by bias temperature instability,” in IEDM Tech. Dig., 1995, pp.

871–874.

77

[30] G. La Rosa et al., “NBTI-channel hot carrier effects in PMOSFETS in advanced CMOS technologies”, Proc. IRPS, p.282, 1997.

相關文件