• 沒有找到結果。

Suggestions for Further Work

On the basis of the developed numerical solution techniques,the following suggestions are given for the future work:

1. automatically generate the circuit nodal equations with modified nodal analysis in the net list formation, such as .ps file of SPICE, 2. in the MI algorithm, utilize vector and matrix forms for unknown

variables and linear/weak-nonlinear circuit elements,

3. accelerate the numerical solution methods by parallel computation techniques,

4. extend our method to more and newer semiconductor compact mod-els,

5. replace the NI related part of the numerical solution methods for RF steady-state circuit problems, such as frequency-domain HB method, with the MI algorithm, and

6. combine the nonlinear circuit solver and parameter extraction al-gorithm, such as GA, to develop new compact models for modern semiconductor devices.

[1] Christopher M. Snowden, Semiconductor Device Modelling, London:

Springer-Verlag, 1989.

[2] Behzad Razavi, RF Microelectronics, Prentic Hall PTR, 1998.

[3] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Cir-cuits, Cambridge University Press, 1998.

[4] Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed., New York:

John Wiley & Sons, Inc., 2001.

[5] L. Nagel, SPICE2: A computer program to simulate semiconductor circuits, Electron. Res. Lab., Univ. California at Berkeley, UCB/ERL M520, 1975.

[6] T. Quarles, The SPICE3 implementation guide, Electron. Res. Lab., Univ. California at Berkeley, UCB/ERL M89/44, 1989.

134

[7] K. Mayaram, D.C. Lee, S. Moinian, D.A. Rich, and J. Roychowd-hury, ”Computer-aided circuit analysis tools for RFIC simulation: al-gorithms, features, and limitations,” IEEE Transactions on Circuits and SystemsXII: Analoh and Digital Signal Processing, vol. 47, no. 4, pp.

274-286, April 2000.

[8] Kenneth S. Kundert, ”Introduction to RF Simulation and Its Applica-tion,” IEEE Journal of Solid-State Circuits, vol. 34, no. 9, pp. 1298-1319, Sept. 1999.

[9] Paulo J. Rodrigues, Computer-Aided Analysis of Nonlinear Microwave Circuits, Artech House, Inc., 1998.

[10] T.J. Aprille and T.N. Trick, ”Steady-state analysis of nonlinear circuits with periodic inputs,” Proc. IEEE, vol. 60, pp. 108-114, Jan. 1972.

[11] T.J. Aprille and T.N. Trick, ”A computer algorithm to determine the steady-state response of nonlinear oscillators,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 354-360, July 1972.

[12] R. Telichevesky, K. Kundert, and J. White, ”Efficient steady-state anal-ysis based on matrix-free Krylov subspace methods,” in Proc. IEEE DAC, pp. 480-484, 1995.

[13] M. Nakhla and J. Vlach, ”A piecewise harmonic balance technique for determination of the periodic response of nonlinear systems,” IEEE Trans. Circuits Syst., vol. CAS-23, pp. 85-91, Feb. 1976.

[14] A. Ushida and L. Chua, ”Frequency-domain analysis of nonlinear cir-cuits driven by multi-tone signal,” IEEE Trans. Circir-cuits Syst., vol. CAS-31, pp. 766-778, Sept. 1984.

[15] K. Kundert and A. Sangiovanni-Vincentelli, ”Simulation of nonlinear circuits in the frequency domain,” IEEE Trans. Computer-aided De-sign, vol. CAD-5, pp. 521-535, Oct. 1986.

[16] D. Long, R. Melville, K. Ashbu, and B. Horton, ”Full-chip harmonic balance,” in Proc. IEEE CICC, pp. 379-382, May 1997.

[17] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady-State Methods for Simulating Analog and Microwave Circuits, Kluwer Academic Publisher, 1990.

[18] Stephen A. Mass, Nonlinear Microwave and RF Circuits, 2nd ed., Artech House, Inc., 2003.

[19] Leon O. Chua, Charles A. Desoer, and Ernest S. Kuh., Linear and non-linear circuits, McGraw-Hill, 1987.

[20] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Nu-merical Recipes in C++: the art of scientific computing, 2nd ed., Cam-bridge University Press, 2002.

[21] Shoichiro Nakamura, Applied Numerical Methods in C, Prentice Hall, Inc., 1995.

[22] K. Kundert, J. White ,and A. Sangiovanni-Vincentelli, ”A mixed frequency-time approach for distortion analysis of switching filter cir-cuits,” IEEE J. Solid-State Circuits, vol. 24, pp. 443-451, Apr. 1989.

[23] J. Roychowdhury, ”Analyzing circuits with widely-separated time scales using numerical PDE methods,” IEEE Trans. Circuits Syst. I, May 1999.

[24] L. Petzold, ”An efficient numerical method for highly oscillatory or-dinary differential equations,” SIAM J. Numer. Anal., vol. 18, pp. 455-479, June 1981.

[25] K. Kundert, J. White ,and A. Sangiovanni-Vincentelli, ”An envelope-following method for the efficient transient simulation of switching power and filter circuits,” in Proc. ICCAD, pp. 446-449, Nov. 1988.

[26] E. Ngoya and R. Larcheveque, ”Envelope transient analysis: A new method for the transient and steady-state analysis of microwave com-munication circuits and systems,” in IEEE MTT Symp. Dig., pp. 1365-1368, June 1996.

[27] J. Roychowdhury, ”MPDE methods for efficient analysis of wireless systems,” in Proc. IEEE CICC, pp.451-454, May 1998.

[28] M. Okumura, T. Sugawara, and H. Tanimoto, ”An efficient small-signal frequency analysis method for nonlinear circuits with two frequency

excitations,” IEEE Trans. Computer-aided Design, vol. 9, pp.225-235, Mar. 1990.

[29] P. Wambacq, and W. Sansen, Distortion Analysis of Analog Integrated Circuit, Kluwer Academic Publisher, 1998.

[30] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, ”The wave-form relaxation method for time-domain analysis of large scale inte-grated circuits,” IEEE Trans. on CAD of IC and Systems, vol. CAD-1, pp. 131-145, July 1982.

[31] H. K. Gummel, ”A self-consistent iterative scheme for one-dimensional steady state transport calculations,” IEEE Trans. Electron Devices, ED-11, pp. 455-465, 1964.

[32] Vandewalle Stefan, Parallel multigrid waveform relaxation for parabolic problems, Teubner, 1993.

[33] S. Heikkil¨a and V. Lakshmikantham, Monotone iterative techniques for discontinuous nonlinear differential equations, New York: Marcel Dekker, 1994.

[34] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York:

Plenum Press, 1992.

[35] Yiming Li, ”A monotone iterative method for bipolar junction transistor circuit simulation,” WSEAS Tranactions on Mathematics, vol. 1, no. 4, pp.159-164, Oct. 2002.

[36] Yiming Li, ”A Parallel Monotone Iterative Method for the Numerical Solution of Multidimensional Semiconductor Poisson Equation,” Com-puter Physics Communications, vol. 153, no. 3, pp. 359-372, July 2003.

[37] C.-W. Ho, A. Ruehli, and P. Brennan, ”The modified nodal approach to network analysis,” IEEE Trans. on Circuits and Systems, vol. 22, pp.

504-509, June 1975.

[38] Kenneth S. Kundert, Spectre user’s guide: a frequency domain simu-lator for nonlinear circuits, EECS Industrial Liaison Program, Univ.

California at Berkeley, Apr. 1987.

[39] Kenneth S. Kundert, The designer’s guide to SPICE and SPECTRE, Kluwer Academic Publisher, 1995.

[40] Advanced Design System, ADS., Agilent Technologies. [Web re-sources: http://eesof.tm.agilent.com/products/adsoview.html]

[41] Affirma Analog Artist circuit design environment, Cadence Design System. [Web resources: http://www.cadence.com/technology/custom/

products/artist.html]

[42] S.M. Sze, Physics of Semiconductor Devices, 2nd ed, New York: John Wiley & Sons, Inc., 1981.

[43] B. Bayraktaroglu and J. A. Higgins, ”HBTs for microwave power appli-cations,” in Current Trends in Heterojunction Bipolar Transistors, M.

F. Chang, Ed. Singapore: World Scientific, 1996.

[44] M. Yanagihara, H. Sakai, Y. Ota, and A. Tamura, ”High fmax Al-GaAs/GaAs HBT with L-shaped base electrode and its application to 50 GHz amplifier,” Solid-State Electron, vol. 41, pp. 1615-1620, Oct.

1997.

[45] N. Pan, J. Elliott, M. Knowles, D. P. Vu, K. Kishimoto, J. K. Twynam, H. Sato, M. T. Fresina, and G. E. Stillman, ”High reliability In-GaP/GaAs HBT,” IEEE Trans. Electron Devices, vol. 19, pp. 115-117, April 1998.

[46] T. Oka, K. Hirata, H. Suzuki, K. Ouchi, H. Uchiyama, T. Taniguchi, K.

Mochizuki, and T. Nakamura, ”High-speed small-scale InGaP/GaAs HBT technology and its application to integrated circuits,” IEEE Trans.

Electron Devices, vol. 48, pp. 2625-2630, Nov. 2001.

[47] M. Sokolich, M.Y. Chen, D.H. Chow, Y. Royter, S. Thomas III, C.H.

Feilds, D.A. Hitko, B. Shi, M. Montes, S.S. Bui, Y.K. Boegeman, A.

Arthur, J. Duvall, R. Martinez, T. Hussain, R.D. Rajavel, J.C. Li, K. El-liott, and J.D. Thompson, ”InP HBT integrated circuit technology with

selectively implanted subcollector and regrown device layers,” IEEE Journal of Solid-State Circuits ,vol.39, pp. 1615-1621, Oct. 2004.

[48] R.S. Burton and P. Dai, ”Characterization and modeling of InGaP HBT low-frequency oscillations,” IEEE Trans. Electron Devices, vol. 51, pp.

1033-1036, June 2004.

[49] J. J. Ebers and J. L. Moll, ”Large-signal behavior of junction transis-tors,” Proc. IRE, vol. 42, pp. 1761-1772, Dec. 1954.

[50] H. K. Gummel and H. C. Poon, ”An integral charge control model of bipolar transistors,” Bell Syst. Tech. J., vol. 49, pp. 827-852, May 1970.

[51] I.E. Getreu, Modeling the Bipolar Transistor, Elsevier, 1984.

[52] William Liu, Handbook of III-V Heterojunction Bipolar Transistor, New York: John Wiley & Sons, Inc., 1998.

[53] D. Berger,D. Cell, M. Schroter, M. Malorny, T. Zimmer, and B. Ar-douin, ”HICUM parameter extraction methodology for a single transis-tor geometry,” in Proceedings of Bipolar/BiCMOS Circuits and Tech-nology Meeting, pp. 116-119, 2002.

[54] M. Schroter, S. Lehmann, H. Jiang, and S. Komarow, ”HICUM/Level0 - a simplified compact bipolar transistor model,” in Proceedings of Bipolar/BiCMOS Circuits and Technology Meeting, pp. 112-115, 2002.

[55] M. Schroter, ”Staying current with HICUM,” IEEE Circuits and De-vices Magazine, vol. 18, pp. 16-25, May 2002.

[56] W.J. Kloosterman, J.A.M. Geelen, and D.B.M. Klaassen, ”Efficient pa-rameter extraction for the MEXTRAM model,” in Proceedings of Bipo-lar/BiCMOS Circuits and Technology Meeting, pp. 70-73, 1995.

[57] E. Sonmez, W. Durr, P. Abele, K.-B. Schad, and H. Schumacher, ”Pa-rameter extraction of SiGe HBTs for a scalable MEXTRAM model and performance verification by SiGe HBT MMIC active receive mixer de-sign for 11 GHz,” in Topical Meeting on Integrated Circuits in RF Sys-tems, Digest of Papers., pp. 159-162, 2000.

[58] X. Cao, J. Mcmacken, K. Stiles, P. Layman, J.J. Liou, A. Oritz-Conde, and S. Moinian, ”Comparison of the new VBIC and conventional Gummel-Poon bipolar transistor models,” IEEE Trans. Electron De-vices, vol. 47, pp. 427-433, Feb. 2002.

[59] B. Senapati and C.K. Maiti, ”Advanced SPICE modelling of SiGe HBTs using VBIC model,” IEE Proceedings G- Circuits, Devices and Systems, vol. 149, pp. 129-135, April 2002.

[60] X. Cao, J. McMacken, K. Stiles, P. Layman, J.J. Liou, A. Sun, and S.

Moinian, ”Parameter extraction and optimization for new industry stan-dard VBIC model,” in Second International Conference on Advanced Semiconductor Devices and Microsystems, vol. 149, pp. 107-116, 1998.

[61] Avant! Corp., Star-Hspice Manual Volume II - Elements and Device Models, Avant! Corp. and Avant! subsidiary, 1999.

[62] W. Ryu, A.L.C. Wai, F. Wei, W.W. Lai, and J. Kim, ”Over GHz low-power RF clock distribution for a multiprocessor digital system,” in Proc. IEEE Electronic Components and Technology Conf., pp. 133-140, 2001.

[63] L. Dermentzoglou, A. Arapoyanni, and A. Pneumatikakis, ”A direct conversion receiver analysis for multistandard wireless applications,”

in Proc. IEEE The 10th Mediterranean Electrotechnical Conf., pp. 318-321, 2000.

[64] Yiming Li, Chuen-Tsat Sun, and, Cheng-Kai Chen, ”A Floating-Point Based Evolutionary Algorithm for Model Parameters Extraction and Optimization in HBT Device Simulation,” in Advances in Soft Comput-ing - Neural Networks and Soft ComputComput-ing, Edited by L. Rutkowski and J. Kacprzyk, Physica-Verlag, pp. 364-369, Jan. 2003.

[65] W. Liu, ”Transient response of junction temperature in power hetero-junction bipolar transistors,” Jpn. J. Appl. Phys., vol. 32, pp. 5503-5507, 1993.

[66] L. L. Liou, J. L. Ebel, and C. I. Huang, ”Thermal effects on the charac-teristics of AlGaAs/GaAs heterojunction bipolar transistors using two-dimensional numerical simulation,” IEEE Trans. Electron Devices, vol.

40, pp. 35-43, Jan. 1993.

[67] J. J. Liou, L. L. Liou, and C. I. Huang, ”Analytical model for the Al-GaAs/GaAs multiemitter finger HBT including self-heating and ther-mal coupling effects,” IEE Proc. Circuits, Devices and Systems, vol.

141, pp. 469-475, Dec. 1994.

[68] Y. Zhu, J. K. Twynam, M. Yagura, M. Hasegawa, T. Hasegawa, Y.

Eguchi, Y. Amano, E. Suematsu, K. Sakuno, N. Matsumoto, H. Sato, and N. Hashizume, ”Self-heating effect compensation in HBTs and its analysis and simulation,” IEEE Trans. Electron Devices, vol. 48, pp.

2640-2646, Nov. 2001.

[69] S. Heckmann, R. Sommet, J.-M. Nebus, J.-C. Jacquet, D. Floriot, P.

Auxemery, and R. Quere, ”Characterization and modeling of bias de-pendent breakdown and self-heating in GaInP/GaAs power HBT to im-prove high power amplifier design,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2811-2819, Dec. 2002.

[70] M. Rudolph, ”Uniqueness problems in compact HBT models caused by thermal effects,” IEEE Trans. Microwave Theory Tech., vol. 52, pp.

1399-1403, May 2004.

[71] C.-H. Liao, C.-P. Lee, N. L. Wang, and B. Lin, ”Optimum Design for a Thermally stable multifinger power transister,” IEEE Trans. Electron Devices, vol. 49, pp. 902-908, May 2002.

[72] C. H. Liao and C. P. Lee, ”Optimum Design for a Thermally stable multifinger power transister with temperature-dependent thermal con-ductiivity,” IEEE Trans. Electron Devices, vol. 49, pp. 909-915, May 2002.

[73] P. M. Asbeck, H. Kobayashi, M. Iwamoto, G. Hanington, S. Nam, L.

and E. Larson, ”Augmented behavioral characterization for modeling the nonlinear response of power amplifiers,” in IEEE MTT-S Microwave Symp. Dig., pp. 135-138, 2002.

[74] Y. Zhu, Q. Cai, R. Balasubramanian, and J. Gerber, ”Multi-finger power HBT model for nonlinear circuit simulation ,” in Proc. IEEE RAWCON, pp. 129-132, 2001.

[75] A. Samelis and D. Pavlidis, ”Analysis of the large-signal characteris-tics of power heterojunction bipolar transistors exhibiting self-heating effects,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 534-542, Apr. 1997.

[76] H.-M. Park and S. Hong, ”A novel temperature-dependent large-signal model of heterojunction bipolar transistor with a unified approach for self-heating and ambient temperature effects,” IEEE Trans. Electron Devices, vol. 49, pp. 2099-2106, Dec. 2002.

[77] Kuen-Yu Huang, Yiming Li, and Chien-Ping Lee, ”Computer simula-tion of multifinger heterojuncsimula-tion bipolar transistor with self-heating

and thermal coupling models,” Microelectronic Engineering, vol. 75, pp. 137-144, Aug. 2004.

[78] BSIM3 MOSFET Model, Device Group, Department of Electrical En-gineering and Computer Sciences, Uinversity of California, Berkeley.

[Web resources: http:// www-device.eecs.berkeley.edu / bsim3 /late-news.html]

[79] BSIM4 MOSFET Model, Device Group, Department of Electrical En-gineering and Computer Sciences, Uinversity of California, Berke-ley. [Web resources: http:// www-device.eecs.berkeBerke-ley.edu / bsim3 /bsim4.html]

[80] C. Enz, F. Krummenacher, E. Vittoz, ”An analytical MOS transistor model valid in all regions of Operation and dedicated to low-voltage and low-current applications,” Journal on Analog Integrated Circuits and Signal Processsing, Kluwer Academic Pub., pp.83-114, July 1995.

[Web resources: http://legwww.epfl.ch/ekv]

[81] V. Lakshmikantham and S. Leela, Differential and integral inequalities, New York: Academic Press, 1968.

[82] Yiming Li, Kuen-Yu Huang, Cheng-Kai Chen, Chien-Ping Lee, ”A Par-allel Computational Technique for High Frequency HBT Circuit Simu-lation,” in Technical Proceedings of 5th ACR/IEEE/SIAM International

Conference on Modeling and Simulation of Microsystems (MSM 2002), April, pp. 376-379, 2002.

[83] Kuen-Yu Huang, Yiming Li, C.-P. Lee, and S. M. Sze, ”A computa-tional efficient method for HBT intermodulation distortions and two-tone characteristics simulation,” in International Conference on Simu-lation of Semiconductor Processes and Devices, SISPAD, pp. 226-229, 2001.

[84] Kuen-Yu Huang, Yiming Li, and Chien-Ping Lee, ”A time-domain ap-proach to simulation and characterization of RF HBT two-tone inter-modulation distortion,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2055-2062, Oct. 2003.

[85] Melanie Mitchell, An Interoduction to Genetic Algorithms, The MIT Press, 1998.

[86] David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley Longman, Inc., 17th Printing, March 1988.

[87] K.F. Man, K.S. Tang, S. Kwong, and W.A. Halang, Genetic Algorithm for Control and Signal Processing, London: Springer Verlag, 1997.

[88] R. Menozzi, A. Piazzi, and F. Contini, ”Small signal modeling for mi-crowave FET linear circuits based on a genetic algorithm,” IEEE Trans.

Circ. Syst.-I, vol. 43, pp. 839-847, Oct. 1996.

[89] D. R. Pehlke and D. Pavlidis, ”Evaluation of the factors determining HBT high-frequency performance by direct analysis of S-parameter data,” IEEE Trans. Microwave Theory Techn., vol. 40, pp. 2367-2373, Dec. 1992.

[90] W. M. Spears and K. De Jong, ”On the Virtues of Parameterized Uni-form Crossover,” in The Fourth International Conference on Genetic Algorithm, pp. 230-236, 1991.

[91] MATLAB 6.0, Natick, MA: The Mathworks, Inc. [Web resources:

http://www.mathowrks.com]

[92] B. Li, and S. Prasad, ”Harmonic and two-tone intermodulation distor-tion analyses of the inverted InGa/InAlAs/InP HBT,” IEEE Trans. Mi-crowave Theory Tech., vol. 45, pp. 1135-1137, July 1997.

[93] B. Troyanovsky, Z. Yu, and R. W. Dutton, ”Physics-based simulation of nonlinear distortion in semiconductor devices using the harmonic balance method,” Comput. Methods Appl. Mech. Engrg., vol. 181, pp.

467-482, Jan. 2000.

[94] J. Lee, W. Kim, Y. Kim, T. Rho, and B. Kim, ”Intermodulation mech-anism and linearization of AlGaAs/GaAs HBT’s,” IEEE Trans. Mi-crowave Theory Tech., vol. 45, pp. 2065-2072, Dec. 1997.

[95] B. Li, and S. Prasad, ”Intermodulation analysis of the collector-up In-GaAs/InAlAs/InP HBT using Volterra series,” IEEE Trans. Microwave Theory Tech., vol. 46, pp.132-1323, Sept. 1998.

[96] M. Iwamoto, P.M. Asbeck, T.S. Low, C.P. Hutchinson, J.B. Cognata, X. Qin, L.H. Camnitz, and D.C. D’Avanzo, ”Linearity characteristics of GaAs HBTs and the influence of collector design,” IEEE Trans. Mi-crowave Theory Tech., vol. 48, pp. 2377-2388, Dec. 2000.

[97] G. Niu, Q. Liang, J. D. Cressler, C. S. Webster, and D. L. Harame,

”Systematic analysis of RF distortion in SiGe HBT’s,” in IEEE RFIC Symp. Dig., pp. 147-150, 2001.

[98] Y. Wang, S. V. Cherepko, J. C. M. Hwang, F. Wang, and W. D. Jemison,

”Asymemetry in intermodulation distortion of HBT power amplifiers,”

in IEEE GaAs IC Symp. Tech. Dig., pp. 201-204, 2001.

[99] Steve C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House, Inc., 1999.

[100] B. Hughes, A. Ferrero, and A. Cognata, ”Accurate on-wafer power and harmonic measurement of microwave amplifiers and devices,” in Proc.

IEEE Intl. Microwave Symp., pp. 1019-1022, 1992.

[101] ATN Microwave, ”A load-pull system with harmonic tuning,” Mi-crowave Journal, pp. 128-132, March 1996.

[102] Thomas S. Laverghetta, Morden Microwave Measurements and Tech-niques, Artech House, Inc., 1988.

[103] Chung-Er Huang, Chien-Ping Lee, Hsien-Chang Liang, and Ron-Ting Huang, ”Critical spacing between emitter and base in InGaP Hetero-junction Bipolar Transistor (HBTs),” IEEE Electron Device Letters, vol. 23, pp. 576-578, Oct. 2002.

[104] Avant! Corp., Star-Hspice Manual Volume III - MOSFET Models, Avant! Corp. and Avant! subsidiary, 1999.

The MOSFET EKV Model

W

e describe the EPFL-EKV model in this appendix. EPFL-EKV MOSFET model is developed by the Electronics Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland [80]. It is a scalable and compact simulation model built on fundamental physical proper-ties of the MOS structure. This model is dedicated to the design and simulation of low-voltage, low-current, analog, and mixed single circuit using submicron CMOS technology. The EKV MOSFET model is in principle formulated as a single expression, which preserves continuity of first and higher-order deriva-tives with respect to any terminal voltage, in the entire range of validity of the model. The EPFL-EKV MOSFET model version 2.6 includes modelling of the following effects:

1. basic geometrical and process related aspects such as oxide thickness, junction depth, and effective channel length/width,

151

2. effects of doping profile and substrate effect,

3. modelling of weak, moderate and strong inversion behaviors,

4. modelling of mobility effects due to vertical/lateral fields and velocity saturation,

5. short-channel effects such as channel-length modulation (CLM), source/drain charge-sharing (including for narrow channel widths), and reverse short channel effect (RSCE),

6. modelling of substrate current due to impact ionization,

7. quasi-static charge-based dynamic model,

8. thermal and flicker noise modelling,

9. a first-order non-quasistatic model for the transadmittances, and

10. short-distance geometry- and bias-dependent device matching.

The description concentrates on the intrinsic part of the MOSFET, and is intended to give model users the information on parameter handling and the actual equations used in the computer simulation. The extrinsic part of the MOSFET is handled as it is often made for other MOSFET models. The ex-trinsic model includes the series resistances of the source and drain diffusions, which are handled as external elements, as well as junction currents and ca-pacitances. The complete model can be found in [104].