• 沒有找到結果。

CHAPTER 4 CONCLUSIONS AND FUTURE WORK

4.2 Future Work

The MOS capacitors used in the current-mode LNA circuit can be replaced with MIM capacitor for better performance. The current-mode downconverter can be re-designed for low supply voltage operation. For the integrity of current-mode receiver front-end, the current-mode VCO could been included. Finally, a frequency synthesizer also can be included to obtain a stable LO signal.

REFERENCES

[1] B. Razavi, “CMOS technology characterization for analog and RF design,” IEEE J.

Solid-State Circuits, vol. 34, pp. 268-276, Mar. 1999.

[2] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.

[3] John Rogers and Calvin Plett, Radio Frequency Integrated Circuit Design, Boston. London, MA: Artech House, April 2003.

[4] D. K. Shaeffer and T. H. Lee, “A 1.5V 1.5-GHz CMOS Low Noise Amplifier,” VLSI Circuits Symp. Dig. Tech. Papers, pp. 32-33, June 1996.

[5] D. K. Shaeffer and T. H. Lee, The Design and Implementation of Low Power CMOS Radio Receivers. Boston, MA: Kluwer, 1999.

[6] B. Razavi, IEEE Fellow, “A 60-GHz CMOS Receiver Front-End,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, January 2006.

[7] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18-um CMOS technology,” IEEE Microw. Wireless Compon.

Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.

[8] X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end,” IEEE Journal of Solid-State Circuits, vol.38, Feb. 2004, pp.368-373

[9] S.G Lee and L.K Choi, “Current-reuse bleeding mixer,” Electronics letters, vol.36, no.8, 13th April 2000.

[10] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2005, pp.163–166.

[11] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M.L.Schmatz, C.

Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel,“30–40-GHz drain-pumped

passive-mixer MMIC fabricated on VLSISOI CMOS technology,” IEEE Trans.

Microw. Theory Tech., vol.52, no.5, pp. 1382-1391, May 2004.

[12] H. T. Friis, “Noise Figure of Radio Receivers,” in proc. IRE, vol. 32, pp.419-422, jul. 1994.

[13] T. H. Lee, the design of CMOS radio-frequency integrated circuits, second edition, Boston , MA: Cambridge, 2004

[14] A. A. Abidi, “High-frequency noise measurement on FET’s with small dimensions,” IEEE Transactions in Electron Devices, vol. ED-33, no.11, pp.

1801-1805, Nov. 1986.

[15] Aldert van der Ziel, “Noise in solid-state devices and lasers,” Proceeding of the IEEE, vol. 58, no. 8, pp. 1178-1206, Aug. 1970.

[16] R. P. Jindal, “Noise associated with distributed resistance of MOSFET gate structures in integrated circuits,” IEEE Transactions on Electron Devices, vol.

ED-31, no. 10, pp. 1505-1509, Oct.1984

[17] Behzad Razavi, Run-Hong Yan and Kwing F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 41, no. 11, pp.750-754, Nov.1994.

[18] “Fundamentals of RF and microwave noise figure measurements,” Aglient Technologies, Palo Alto, CA, Application note 57-1.

[19] H. Samavati, H. R. Rategh and T. H. Lee, “A 5-GHz CMOS Wireless LAN receiver Front-End,” IEEE J. Solid-State Circuits, vol. 35, pp. 765-772, May 2000.

[20] Joy Laskar, Babak Matinpour and Sudipto Chakraborty, Modern Receiver Front-End, Upper Saddle River, MA: John Wiley & Sons, Inc. (US), 2004.

[21] Huei Wang, Shih-Chieh Shin, “18-26 GHz Low-Noise amplifier Using 130- and 90-nm Bulk CMOS technologies”, Symposium on Radio Frequency Integrated

Circuits (RFIC), 2005

[22] Shih-Chieh Shin, Ming-Da Tsai, Ren-Chieh Liu, Kun-You Lin, and Huei Wang,” A 24GHz 3.9-dB NF Low-Noise Amplifier Using 0.18um CMOS Technology,” IEEE Microwave and Wireless Components Letters,Vol.15, NO. 7, July 2005

[23] Olivier Dupuis, Xiao Sun, Geert Carchon, Philippe Soussan, Mattias Frendahl, Stefaan Decoutere and Walter Raedt, “24 GHz LNA in 90nm RF-CMOS with High-Q Above-IC Inductors”, Proceedings of ESSCIRC, Grenoble, France, 2005

APPENDIX

I. Current-square circuit for short channel effect:

Msq1 Msq2

Msq3

The simplified current squaring circuit

From the above figure, the correlation between Iin and Iout can be calculated as the following equation with different VDS voltage.

K

)

Take the equation of (Va-Vb) and Va*Vb into equation (1).

)

Thus, the equation (2) can be simplified as the following equation.

EG

)

Due to the LC tank of current squaring circuit resonated at 5-GHz, it could be used as a filter to percolate the leakage signal of LO frequency (19-GHz), RF frequency (24-GHz), up-conversion frequency (19-GHz+24-GHz), the double frequency of RF and LO frequency (48-GHz and 38-GHz) and third frequency of RF and LO frequency (72-GHz and 57-GHz).

)

Thus, the smaller difference between VDS1 and VDS3 is the better for the current square operation. The following figure represents the impact of difference VDS voltage. The smaller difference of VDS voltage will have the greater conversion gain of current-mode mixer. Therefore, there are two important issues about the current square circuit. First, the channel length of MOS devices in the current square circuit should be chosen as larger channel length to alleviate the short channel effect.

Second, the biasing voltage of current square circuit should be chosen with the smallest difference of VDS between M1 and M3 MOS devices. While the V2 is equal to

VDD, the voltage of VDS1 is very close to VDS3.

0.9 1.0 1.1 1.2 1.3 1.4 1.5

-8 -6 -4 -2 0 2 4 6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Difference between VDS1 and VDS3 [V]

Conversion gain [dB]

Biasing voltage V2 of current square circuit [V]

Conversion gain |VDS1-VDS3|

The impact of difference of VDS voltage

簡 歷

姓名: 詹豪傑

生日: 1982 年 01 月 20 日 出生地: 台灣省屏東縣

E-mail: sunnykk.ee93g@nctu.edu.tw 學歷:

屏東縣立內埔國民中學 1994/09~1997/06 國立屏東高級中學 1997/09~2000/06 國立台北科技大學 電機工程學系 2000/09~2004/06 國立交通大學 電子研究所 2004/09~2006/11 研究所主修課程:

課程名稱 授課教師

類比積體電路(一) 吳介琮 教授

類比積體電路(二) 吳介琮 教授

數位積體電路 柯明道 教授

高等電磁學(一) 桂正媚 教授

半導體物理及原件 雷添福 教授

化合物半導體物理及原件 張國明 教授

積體電路之靜電防護技術特論 柯明道 教授

有線傳輸通信積體電路設計 陳巍仁 教授

微波量測原理 張志揚 教授

RFID 技術與系統應用整合 廖德誠 教授

射頻積體電路 郭建男 教授

數位通訊 桑梓賢 教授

相關文件