• 沒有找到結果。

Chapter 6 Conclusion and Suggestions for Future Works

6.2 Suggestions for Future Works

In this thesis, most studies were focus on characterization, parameter extraction, and modeling of RF MOSFET’s. Some issues such as the behaviors of MOSFET’s suffer from body effect or under different substrate bias could be further investigated.

Moreover, applying the model based on four-port measurement to the circuit design process would be interesting and which can evaluate the accuracy of the model further.

Reference

[1] J. E. Lilienfeld, U.S. Patent 1,745,175, 1930.

[2] W. Shockley and G. L. Pearson, “Modulation of Conductance of Thin Films of Semiconductors by Surface Charges,” Phy. Rev., 74, 232, 1948

[3] D.Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Field Induced Surface Devices,” IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, Pa., 1960.

[4] D. Kahng, “A Historical Perspective on the Development of MOS Transistors and Related Devices,” IEEE, Trans., Electron Devices, ED-23, 655, 1976

[5] T. Cho, E. Dukatz, M. Mack, D. MacNally, M. Maringa, S. Mehata, C. Nilson, L, Plouvier, and S. Rabii, “ A Single-Chip CMOS Direct-Conversion Transceiver for 900MHz Spread-Spectrum Digital Cordless Phones,” Int, Solid-State Circuit Conf., 1999, p.228-229

[6] J. Rudell, J. Ou, T. Cho, G. Chien, F. Brianti, J. Weldon, and P. Gray, “ A 1.9 GHz Wide-Band IF Double Conversion CMOS Integrated Receiver For Cordless Telephone Applications,” Int. Solid-State Circuits Conf., 1997, p.304-305.

[7] A. Rofougaran, J. Y-C. Chang, M. Rofougaran, and A. Abidi, “ A 1GHz CMOS RF Front-End IC for a Direct-Conversion Wireless Receiver,” IEEE, J.

Solid-State Circuits, Vol.31, July 1996, p.880-889.

[8] M. B. Das, “High frequency network properties of MOS transistors including the substrate resistivity effects,” IEEE Trans. Electron Devices, Vol. Ed-16, No.12, Dec. 1969, p.1049-1069.

[9] W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal, and J. P. Mattia,

“ RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model,” Int. Electron Devices

Meeting, 1997, p.309-312.

[10] J.J. Ou, X. Jin, I. Ma, C. Hu, and P.R. Gray, “CMOS RF modeling for GHz communication IC’s” IEDM, 1998, 94-95.

[11] S.F. Tin, A.A. Osman, K. Mayaram, and C. Hu, “ A simple subcircuit extension of the BSIM3V3 model for CMOS RF design,” IEEE, J. Solid-State Circuits, Vol.35, no.4, Apr. 2000, 612-624.

[12] D.R. Pehlke, M. Schroter, A. Burstein, M. Matloubian, and M.F. Chang,

“High-frequency application of MOS compact models and their development for scalable RF model libraries,” Custom Integrated Circuits Conf., 1998, p.219-222.

[13] Y. Ge, and K. Mayaram, “ A Comparative analysis of CMOS Low Noise Amplifiers for RF Applications,” IEEE Proc. ISCAS 98, Vol.4, 1998, pp.

349-352.

[14] X. Li, H.S. Kim, M. Ismail and H. Olsson, ”A Novel Design Approach for GHz CMOS Low Noise Amplifiers,” IEEE RAWCON 99, 1999, pp. 285-288.

[15] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Generating All Two-MOS-Transistor Amplifiers Leads to New Wide-Band LNAs,” IEEE Journal of Solid-State Circuits, Vol. 36, No.7 pp. 1032-1040 July 2001.

[16] J. Martinez-Castillo, A. Diaz-Sanchez and M. Linares-Aranda, “Differential Transimpedance Amplifiers for Communications Systems Based on Common-Gate Topology,” IEEE ISCAS 2002, Vol.2, 2002, pp. 97-100.

[17] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,” 2nd ed., New Jersey: Prentice Hall, 1996, pp. 60-61.

[18] F. Sischka, “IC-CAP Modeling Reference,” Agilent Technologies, 2000, pp.

3_49-3_51.

[19] D.C. Benson, Y. Xuan, J. He, C.M. Lin, C.R. Hodges, and E. A. Logan,

Communication Conf., 1997, 175-180.

[20] D. Lovelace, J. Costa, and N. Camilleri, “Extracting small-signal parameters of silicon MOSFET transistors,” IEEE Trans. Microwave Theory and Techniques Symp., 1994, p.865-868.

[21] C.E. Biber, M.L. Schmatz, T. Morf, U. Lott, and W. Bachtold, “A nonlinear microwave MOSFET model for Spice simulators,” IEEE, Trans. Microwave Theory and Techniques, Vol.46, no.5, May, 1998, p.604-610.

[22] R. Sung, P. Bendix, and M.B. Das, “Extraction of high-frequency equivalent circuit parameters of submicron gate-length MOSFET’s,” IEEE Trans. Electron Devices, vol.45, no.8, Aug. 1998, p.1769-1775.

[23] S.H.M. Jen, C.C. Enz, D.R. Pehlke, M. Schroter, and B.J. Sheu, ”Accurate Modeling and parameter extraction fro MOS transistors valid up to 10 GHz,”

IEEE Tran. Electron Devices, vol.46. No.11, PP.2217-2227, Nov. 1999.

[24] A. Ferrero, U. Pisani, “Two-Port Network Analyzer Calibration Using an Unknown “thru””, IEEE Microwave and Guided Wave Letters, Vol.2, No.12, Dec 1992.

[25] S. Basu, L. Hayden, “An SOLR Calibration for Accurate Measurement of Orthogonal on-wafer DUTs”, pp. 1335-1338, 1997 IEEE MTT-S Digest.

[26] Y. Cheng et al., ”A physical and scalable BSIM3V3 IV model for analog/digital circuit simulation,” IEEE Trans. Electron Devices, Vol.44, p.277-287, Feb, 1997.

[27] Mos9 manual, http://www.semiconductors.philips.com/Philips_Models.

[28] Y. Cheng, M. Schroter, C. Enz, M. Matloubian and D. Pehlke, “RF modeling Issue of deep-submicron MOSFET’s for circuit design,” Proc. of the IEEE Int.

Conf. On Solid-State and Integrated Circuit Technology, p.416-419, Otc. 1998.

[29] C.C. Enz, Y. Cheng, “MOS transistor modeling for RF IC Design,” IEEE Tran.

Solid-State Circuits, vol.35, No.2, Feb. 2000.

[30] C.C. Enz, “An MOS transistor model for RF IC Design Valid in all regions of operation,” IEEE Tran. Microwave Theory and Techniques, vol. 50, No. 1, Jan.

2002.

[31] W. Liu, R. Gharpurey, M.C. Chang, U. Erdogan, R. Aggarwal, and J.P. Mattia,

“RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model,” Technical Digest of international Electron Device Meeting, p.309-312, Dec, 1997.

[32] Y.P. Tsividis, “Operation and Modeling of the MOS Transistor”, New York:

McGraw-Hill, 1988.

[33] J. Han, M. Je, and H. Shin, “A simple and accurate method for extracting substrate resistance of RF MOSFETs” IEEE Electron Device Lett., Vol. 23, NO.

7, pp. 434-436, July 2002.

[34] M. Je, and H. Shin, “Gate bias dependent of substrate signal coupling effect in RF MOSFETs” IEEE Electron Lett. VOL. 24, NO. 3, pp.183-185, March 2003.

[35] Y. Cheng, and M. Matloubian “On the high-frequency characteristics of substrate resistance in RF MOSFETs” IEEE Electron Lett. VOL. 21, NO. 12, pp.604-606, Dec. 2000.

[36] X. Jin, J. J. Ou, C. H. Chen, W. Liu, and M. J. Deen, “An effective gate resistance model for CMOS RF and noise modeling,” IEDM Tech. Dig., pp.

961-964, 1998.

[37] H. W. Lin, S. S. Chung, S. C. Wong, and G. W. Huang, “An accurate RF CMOS Gate Resistance Model Compatible with HSPICE,” Proc. IEEE 2004 Int. Conf.

Microelectronic Test Structure, Vol. 17, pp.227-230, March 2004.

Publication List

1. Shih-Dao Wu, Guo-Wei Huang, Kun-Ming Chen, Chun-Yen Chang, Hua-Chou Tseng, and Tsun-Lai Hsu, “Extraction of Substrate Parameters for RF MOSFET’s Based on Four-Port Measurement,” IEEE Microwave And Wireless Components Letters, vol. 15, No. 6, p.437-439, June 2005.

2. Shih-Dao Wu, Guo-Wei Huang, Kun-Ming Chen, Hua-Chou Tseng, Tsun-Lai Hsu, and Chun-Yen Chang, “RF MOSFET Characterization by Four-Port Measurement,” IEICE Trans. Electron., Vol.E88-C, No. 5, p.851-856, MAY 2005.

3. Shih-Dao Wu, Guo-Wei Huang, Sheng-Yo Wen, Liang-Po Chen, and Chun-Yen Chang, “Characterization of 2-port Configuration MOSFET’s Amplifiers by 4-port Measurement,” 2003 Asia-Pasific Microwave Conference, p.1431