• 沒有找到結果。

智慧型車輛自動駕駛與轉向控制之研究

N/A
N/A
Protected

Academic year: 2021

Share "智慧型車輛自動駕駛與轉向控制之研究"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

 

 !"#$%&' 

    

  



NSC-88-2212-E-009-037

 87 ! 12 " 1 #$ 88 ! 7 " 31 #

% & '( ) *+,-./0 1234







      !"#$ %&'()* +,-. /0$1 23456789:;<=> ?@ABCD!E FGHIJK LB89M: NOP 45?@ #Q2RSTUVWXY/0$15Z[ \"]^_/0`abcdeCf f ffghijklmP /0$1nop q r\ 1nos\tuvwuxyb.z{|}f ~|€Y‚ƒ„…†‡/0$1vC/0$ 1vˆ‰Šwu‹ xyb.,Œ/0$ 1ƒ„ 1no Ž; sxy0‘ ’{|}f“{”|•–—˜™š›0‘’œ|€~|œf“{”|•–—˜™ žŸ ’“€¡—¢£¤œ–”¥™ 1o¦§xyb.… †1o’{|}f~|€f¨€€“©|—ª™C«¬ ‰Š%­®E ¯°±0²³´µ(‹l?@¶·¸¹ ºY $»¼ 1½ :¾¿"ÀÁl0‘ ғ{”|•–—f“–˜|”—€™  xy0‘ÄÅ š›0‘žŸ C¯°¶·Æ6¸¹Ÿ Ç »¼9ÈÉÊb ˬË Ì:; » ¼ ÍY‹ÎÏb/0$1vÐÑ Ò q1no¦%­§l0‘ÀÓ)µ ’“{”|•–—fœ¢¢ª¡|Ԁ|“™y›1oCÕ«Ö»¼ ½S×½Œ ØÙGÚ 0‘ÀÓ)µ ÎÏn oxyb.…†o‹ÛÜÝ ½ŒSyÞß² à sÌáqÎÏno(â- ÈàØuã¯l»¼0‘ ä=ʉåe ÈÆC‰Š²³´µ¯°l?@¶· ¸¹ 0‘ÀÓ)oà‹Ûæç »¼Jè él xyb.…†oäÅê3!»¼JèÈë(â-lx yì0’{|}f¢˜—–œœ|–¢”˜™íî ÌÅïð àñ,»¼òglÈ Cf f ffå?@ÏóY±\ôÀ(õö ±0²Š G ÷ø1no à C?@(ù; ú÷²Šû ü ýþÖ$n›Ûš›Ëb .ð[  þÖ$n›Ûxyb. .ð[Cg? @Ïóp  Y¯°Ìú÷²Š  Œú »¼ ² W Íw   ÂÍw gT(â- ›²CÌú »¼ ² Y¦\G´ ²³´_ ´_ à¦\G´÷ø0‘ÀÓ)µ1no à = C®Ç Y±\0‘ÀÓ)o  ±0(‹l.ð[²Š ÷ø xy0‘ š›0‘s!â-W²³´µ¯° ("u žŸ íîCf



1 /0$ y›1 …y± 0Ÿ  »¼½Œ:¾¿ »¼#Ù0‘C

(2)

Abstract

To enhance passenger ride comfort, improve vehicle safety and stability, and possibly reduce potential accidents due to driver mis-operations, automatic steering control has been a fascinating research topic in the area of Advanced Vehicle Control Systems (AVCS). More recently, due to deteriorated traffic congestion on highways, steering control of automated vehicles has been studied extensively in the context of Automated Highway Systems (AHS) among researchers throughout the world in the past several years.

A popular automatic steering control approach for passenger cars is to de-couple the yaw motion from lateral motion by using yaw rate feedback. It has recently been shown that by re-defining the control position at a frequency-dependent distance ahead of the vehicle, the yaw dynamics can also be de-coupled. The resulting system dynamics with this dynamic look-ahead scheme can be simplified into a double-integrator type vehicle dynamics with a constant open-loop gain. It has further been shown that the open loop gain of the resulting double-integrator vehicle dynamics is independent of the vehicle longitudinal velocity. This invariant property makes the design of a full-operating-envelope controller much easier. Even though the simplified input-output dynamics obtained from the dynamic look-ahead scheme appears similar to that from the de-coupling approach using yaw rate feedback, the hidden (unobservable) dynamics of the closed control loop using the dynamic look-ahead scheme possesses much better damping properties than that using yaw rate feedback.

In this study, experimental data of open-loop vehicle dynamics at different vehicle speeds will be used to validate the effectiveness of this dynamic look-ahead scheme. Experimental data utilized in this study include both vehicle yaw rate frequency response and lateral acceleration frequency response, which have been

conducted before by applying frequency-sweeping techniques at different vehicle longitudinal velocities. Important vehicle parameters, such as mass, moment of inertia, and tire cornering stiffness, will firstly be estimated/identified in this project by analyzing these experimental data. Secondly, a computer simulation vehicle model, which has been derived by applying Newton’s law of motion, will be calibrated by

incorporating identified vehicle parameters and possible un-modeled dynamics extracted from the experimental data. This calibrated computer simulation model will be utilized to simulate the vehicle’s closed-loop response under automatic steering control using the proposed dynamic look-ahead scheme. Thirdly, notice that the main appeal of this dynamic look-ahead scheme is that it can de-couple vehicle’s yaw dynamics from vehicle’s lateral dynamics and simplify the input-output dynamics into a double-integrator. This claim will be validated by applying the dynamic look–ahead scheme off-line to the experimental data and examine if the input-output frequency response exhibits double-integrator characteristics.

Keyword

Vehicle Control, Automatic Steering, Lateral Control, Yaw De-coupling, Zero Dynamics, Output Re-definition



 



      !"# $%&'()* +,-. /0$ 123456789:;<=> ?@ABCD !EFGHIJK LB89M: NOP 45 ?@#Q2RSTUVWXY/0$15 Z[\"]^_/0`abcdeC‰Š$% &6% '´GVw /0`abcd»¼ 1 ()à¯*+,-1.G/301d.

(3)

’”€}¢~ªfœ|{€~™23¶.’œ–”ªfœ|{€~™245. ’—¢¢~“–”|–¢”fœ|{€~™267.’~€¥£œ|–¢”fœ|{€~™ ô&ú.’¤Ô{˜–—|œfœ|{€~™Cg1d.&3¶. 18%"d9»¼: ¬45.67. 1 8%ˆ*;k"e <3Cú.7= l»¼0‘ ¬>»¼ˆs*67.(1Cg Ì? »¼()p $1@A"67.  <s/0`abcd¶)pžB:; ãCCf f g/0$1DEF G ?@2¯H *±\I 1 J&KI 1 JÓSCL $12M*I &KI 1 JNOT? @ «¬ ÖP »¼0‘ØÙGÚ $1 Ž;QRlSsÓ!"T"0‘&xy ±0 UV WC! X,$1 YZno sM*xyb. [† \>À] Ë bxy0‘ Ÿ f^ý_f`CÌ? Ÿ noa åeàôÀ] xy0‘ bcd#Ù\ef ÈàØg Óh, i $0‘Cjxy 0‘bc±0Ç3ÈàØg k‘ lm Ö»¼½S¡½Œ ØÙGÚ YÅf‹ÑÒ1 PCf f

®E Chen & Tan [3]2øn M*:¾¿ >gÀo , B0‘ÂÃ/0$½ Œ xy0‘YÅf3ÈàØgCp\0‘ÀÓ) o(‹Û ´_àô¦q`3,*ÀrÙs * Ày›tÛžuÞ v:w¯0‘Cxy z{ *ÀrÙs* Ày›tÛžËb yÞß²f3s,r² 9C| Chen & Tan ÄønyÞß² }[d9ÈÉ L›b f¬=(~C! €±\š›0‘ }[d9ž\"L›b¬sÈf Ì, Í à‚¯ÑÒTÎÏ,b/0$…†1 $1vCf f ƒ„(…‹¶W0‘ÀÓ)o »¼0‘ Ú *GžÝ"M*xyb.…† Ÿ 1(‹ ¶ · «¬‚p(†‡ 0‘‰åesÈÆ C ĈŒ Õ«š›0‘»¼ #Ùs ‰sBbŠ6 »¼#Ù Jèr²ä¸ÊT~ ‹C[i»¼ J #Ù 0‘s>»¼qŒ= Í ‚>Û,>»¼½S½Œ 0‘(ï ð ‰sȎ"Á‘l…†1oˆCX| n xy0‘Ÿ 1no^ý_f` Ž;M*Y »¼ dÙÞ0ے=“wJèl»¼#Ù u” e p\xyb.…†1oxy0‘ÈàØg !¬ÓŒ’=“wJèl†•»¼0‘Cž\"* \xyb.…†1oG–”—…d»¼dÙ"“w Jè u”e  ?@¶JˆŒ_º:¾¿> »¼l½Œ’¢£¤£f~€¡“€¨–”––¢”™Y‹˜“Jè #Ù0‘¦€C| ™šÛg u", .ž› ÀrÂÜ YÐP:¾¿»¼ ½Œ /*Cg0‘ÀÓ)oF ‘Y» ¼#Ùu”:¾Îχ}…d»¼dÙ u” ôž Ûd#ٟ CgÌ,nop B†•zÈàØg 0‘ȉs¬<¡=,æ¢ Jè.6 Á Hs"Ða bl£6 u">Ù xy±0 Æ?sŸ <ÈàØg C€Ç aJè.†• 0‘¸¹Œæ‹ xyì0 !¬Óh,g$ 1/0£æ¢ @¤ÍC









Ì¥Y¦§g$1 0‘ÀÓ)o ú÷?@pŽ; noC¨ûüf f 1. ú÷²Š ©„ 2. »¼ ²ª 3. ±\ú÷²Š´´_ «

4.

0‘À¬soløú

3.1  

p\ GM Buick Lesabre’s _}…d»¼. ð[ ú÷²ŠG÷øÌ,0‘ÀÓ)o =

(4)

Cú÷ ›Ëbô&xyb.©„"lÀ 2¦­?&j®cCà\¯ÉÊ.NO¯° " 0.1 ±²Û 5 ±²l% ³´%nµµ‹Ì ú÷²ŠCe(ˆ¶N. ·Il(ôՑg 5±² sV¸Û»¼$h0v ¶(hC}… d»¼.ð[ú÷(ˆl³´½Sƒ„su" Àl 1 ³¹ICÌ,»¼.ð[l»¼½ Œú÷²ŠˆsgÈÆbl£ W 10 m/s220 m/s & 30 m/s (µ‹ C

3.2  !"

:;  ² ºs Íw2y0w2 Â2]]Âô&Tâ-l› ² YgÌ,8%»¼p¦u&½sCp\®¾¿ nob* 3.1 ¥(‹Û »¼.ð[²ŠàÀ­Œ (ù;l»¼ ²C

3.3 #$%& '()*)+

,-

gÌ,8%»¼p YÓSPn ´ M* 8%Á 3.2 p(‹Û »¼ ²W \ ´´_«C´´_ «ûü  Y´´_(µ‹ ´ÃÄú÷²Š( µ‹ ´ÃÄÅæC  Y´´_(µ‹ 6E½Œ©„ú÷ ²Š(µ‹ 6E©„ÅæC  »¼ ² Æã5Ç  YÈÉÊ´_ »¼0‘W  \$h0v0‘ËôªH

3.4 ./012345

e(ˌ 0‘À)Óµ¬soløúY )SÌ,ÍÎC ÍÎ: }…d÷ø [iÌ,¬soŽ;ÏÐ Tn s\>»¼ l½Œ:¾¿"À.žŽ ÑïÙ W  xy0‘Y›0‘Ÿ CÌ,Ÿ  Íàô±\}…d»¼.ð[(‹lú÷²Šø ú ÄÒs{ Yˌ 0‘À)Óµ¬so [\"ú÷ .ð[²Šô&ÓÔú÷¶· yÞ ß²s!v:w¯vÇøúC ÍÎá: —…d÷ø a" 3.3 ¾¥p(‹Û ´´_ b*Pn ´ ‚à=íŒÕú0‘ M*Y( ˌ 0‘À¬soW \ô÷ø…†$1 v \CÌÁ?@YÅôÌ,8%(‹Û ¶· aÖ)Œ®Ç ¶JC

678 9:

2*ú÷øn(ˌ 0‘ÀÓ)o l= C\}d1u×à‹Û‚.ð [²ŠCg 1996 F 6Ø Buick LeSabrefY´ /;etuv210v&T gu׿Ùe ڍú÷Cu× L›¦;e,¶ Û ± ² $h0vCxyb.tuv&Ëbvˆ;gÜ E:Ý Tn \GÞöxyb.ô&› Ëbßà \ Pentium PC %­‹²Š& 1\ Cf f *" š›0‘ L›b=á⠛ ;‹Ûš›0‘ .ð[ ! ã Àbä妌 æ,bçùÚ/ .ð[ wuCgæ/ wuBp . f`èé sÖ êþý ±²f`Û Û ±² glp b*$ n›2ãxyw&›Ëbw‹.ð[Cäå ™š s B bfŠÇ ¨ š›0‘ÄÅ f KI C‹Ûš›0‘I `㯠

(5)

.ð[ (ôu×6äå\æ¾ 1½SCxy z{ gu× ÍÎ $10väåë\¾ ³ ¹IÀtC›Ëb&xyb..ð [ ú÷¶· g 20m/s(45MPH)& 30m/s(67MPH)¯ HWÄ 1 &Ä 2 (¹Cf f ,Ö$n›Û:¾¿0‘ÀÙ  ›Ëb ‚ìW.ð[ àôb*›Ëb’Ä ý™&xyb. .ð[’Ä ™p ßà Nj ÛCÄ í =¹ìW .ð[´ÃÄCgÄ í àô ڌ gÈÆb£’êf•˜  íêf•˜™(‹lyÞß ² .ð[ ‚îï’= 1db f`w <È> L›b(ïðCÐ { ð«`Ç y Þß²‚9 38db Ì Je Ïs&" ñ¢žÆCf Ä 10$n›‡›ËbyÞß² ´ÃÄf Ä 20$n›‡xyb.yÞß² ´ÃÄf



Ä 30$n›‡0‘ÀÙl›Ëb yÞ ß²´ÃÄf

; <=

1. Ackermann, J., “Robust Decoupling, Ideal Steering Dynamics and Yaw Stabilization Of 4WS Cars”, Automatica, vol.~30, no.~11, pp.~1761—1768, 1994.

2. Ackermann, J., “Robust Decoupling of Car Steering Dynamics with Arbitrary Mass Distribution”, Proceedings of the 1994 American Control Conference, pp.~1964--1968, Baltimore, 1994.

3. Chen, C., and H.S. Tan, “Steering Control of High Speed Vehicles: Dynamic Look Ahead and Yaw Rate Feedback”, Proceedings of 37th IEEE Conference on Decision and Control, Tampa, Florida, December, 1998.

4. Guldner, J., H. Tan, and S. Patwardhan, “Analysis of Automatic Steering Control for Highway Vehicles with Look-down Lateral Reference Systems”, Vehicle System Dynamics, vol. 26, pp. 243-269, 1996.

參考文獻

相關文件

了⼀一個方案,用以尋找滿足 Calabi 方程的空 間,這些空間現在通稱為 Calabi-Yau 空間。.

Students are able to use different learning strategies such as inquiry, reasoning, and problem solving skills in various learning activities. Teachers will employ a variety

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;

another direction of world volume appears and resulting theory becomes (1+5)D Moreover, in this case, we can read the string coupling from the gauge field and this enables us to

compounds, focusing on their thermoelectric, half-metallic, and topological properties. Experimental people continue synthesizing novel Heusler compounds and investigating

• LQCD calculation of the neutron EDM for 2+1 flavors ,→ simulation at various pion masses &amp; lattice volumes. ,→ working with an imaginary θ [th’y assumed to be analytic at θ

•  Flux ratios and gravitational imaging can probe the subhalo mass function down to 1e7 solar masses. and thus help rule out (or

We propose a primal-dual continuation approach for the capacitated multi- facility Weber problem (CMFWP) based on its nonlinear second-order cone program (SOCP) reformulation.. The