• 沒有找到結果。

模擬試題及建議答案_數學科-正卷

N/A
N/A
Protected

Academic year: 2021

Share "模擬試題及建議答案_數學科-正卷"

Copied!
17
0
0

加載中.... (立即查看全文)

全文

(1)

澳門四高校聯合入學考試 (語言科及數學科)

Joint Admission Examination for Macao Four Higher Education Institutions (Languages and Mathematics)

模擬試題及參考答案 Mock Paper and Suggested Answer 數學正卷 Mathematics Standard Paper

(2)

指示: 1. 本卷分為兩部份:第一部份有十五條選擇題,第二部份有五條解答題。全部為必答題。 2. 第一部份有十五條選擇題,每題佔四分,共佔六十分。本部份答案必須使用 HB 鉛筆作答。 3. 第二部份有五條解答題。全部為必答題,共佔四十分。每題所佔分數在題末註明。答案必須使 用藍色或黑色原子筆在每題之指定位置作答。考生必須將解題步驟清楚寫出,只當答案和所有 步驟正確及清楚地表示出來,方可獲得滿分。 4. 寫在其他地方的答案或不按指示作答之考生將不會獲評分。

(3)

第一部份 選擇題。請選出每題之最佳答案。 1. 當 x 由   4 增加至 3 4 ,cosx 的值 A. 一直上升 B. 一直下降 C. 先上升後下降 D. 先下降後上升 E. 以上皆非 2. 某手表的標價比成本高出 40% 。若該手表以七折出售,求盈利或虧蝕百分率。 A. 賺 28% B. 賺 12% C. 賺 10% D. 蝕 2% E. 蝕 10% 3. 在偉恩圖中,陰影部份表示 A. X(YZ) B. Xc(YZ) C. X(YZ)c D. (XY)cZ E. (XcY)Z 4. 若 y x,下列何者為正確? I. x y II. y2 x2 III. (y x) 2x A. 只有 II B. 只有 III C. 只有 I 和 II

D. 只有 I 和 III E. I、II 和 III

5. 已知多項式 p(x) 可被 2x1 整除,而被 x1 除餘數為 1。若 p(x) 被 2x2x1 除,餘式是甚麼? A. 3 2x 3 1 B. x 3 1 C. 3 1x 3 2 D. 3x 3 1 E. 2x 3 2 6. 若 a b 為方程 2x2x50 的兩個不相同的根,則 1 a2 1 b2 A. 25 19 B. 19 25 C. 37 44 D. 21 25 E. 23 25 7. 若 1 7 x x ,則   x x 1 A.  7 B.  5 C. 3 D. 7 E. 以上皆非 X Y A Z

(4)

8. 若 a2 及 ax22x3, 則 A. 2 5    a x B. 2 5   a x C. 2 5   a x D. a x 25 E. 2 5   a x 9. 若 log10y 1 log10x 2 1 ,則 A. y 10x B. y100x2 C. y(10x)2 D. y10x2 E. 以上皆非 10.      2 3 1 1 2 2 2 x x x x A. ) 3 )( 1 )( 1 ( 5 2 2    x x x x x B. ) 3 )( 1 )( 1 ( 7 2 2    x x x x x C. ) 1 )( 1 )( 3 ( 5 2    xx x x D. ) 1 )( 1 )( 3 ( 5 2    xx x x E. ) 1 )( 1 )( 3 ( 7 4 2    x x x x x 11. 有 2 男孩及 3 女孩到課室上課,他們在課室佔了一行 5 座位。如果 2 個男孩要坐在一起,問總 共有多少個可能排座的方法﹖ A. 12 B. 24 C. 36 D. 48 E. 以上皆非 12. 一幾何數列的各項均為正數,且任何項均等於後兩項之和,求公比之值。 A. 1 B. 2 5 C. 2 1 5 D. 2 5 1 E. 5 2 13. 半徑為 1 的圓形裏的內接正八邊形的面積是多少? A. 2 B. 2 2 C. 3 2 D.

2 E. 4 2

14. 若 tan2,其中  落在第三象限,則 sincos 的值是多少? A. 2 1  B. 5 1  C. 5 3  D. 5 1 E. 5 3 15. 若兩直線 axbyc0 和 pxqyr0 互相垂直,則下列何者為真? A. aqbp B. apbq0 C. acbr D. apcr0 E. 以上皆非

(5)

第二部份 解答題。 1. 已知抛物綫 yx24x3 與 x 軸相交於 A、B 兩點,並且與 y 軸相交於 C 點。求 ABC 的面積。 (8 分) 2. 把 ) 1 )( 2 ( 3   x x x 化為部份分式。 (8 分) 3. A 袋有 4 個紅球、6 個黄球和 10 個綠球; B 袋 有 12 個紅球、4 個黄球和 4 個綠球。若在每個袋 中隨機地抽出一個球,求以下各項的概率。 (a) 兩個球都是紅色的。 (2 分) (b) 兩個球都不是紅色的。 (2 分) (c) 最少有一個球是紅色的。 (2 分) (d) 兩個球都是紅色或兩個球都不是紅色的。 (2 分) 4. (a) 利用圖解法解不等式組        17 3 8 5 y x y x (4 分) (b) 設 C2xy,其中 (x, y) 是 (a) 中的不等式組的一個解。C 的極大值是甚麼? (4 分) 5. (a) 設 x 和 y 為整數。證明若 xy 及 y 都可被 6 整除,那麼 x 亦可被 6 整除。 (2 分) (b) 利用 (a) 及數學歸納法證明對所有正整數 n,4n33n25n 為 6 的倍數。 (6 分)

(6)

參考答案

第一部份 選擇題。 題目編號 最佳答案 1 C 2 D 3 E 4 E 5 A 6 D 7 B 8 D 9 B 10 E 11 D 12 C 13 B 14 B 15 B (第二部分答案由下頁開始)

(7)

第二部份 解答題。 1. 已知抛物綫 yx24x3 與 x 軸相交於 A、B 兩點,並且與 y 軸相交於 C 點。求 ABC 的面積。 (8 分) 答案: 因為 x24x3(x1)(x3),所以抛物綫的 x 截距位於 A(1, 0) 和 B(3, 0)。 因為該二次多項式 的常數項是 3, 所以抛物綫的 y 截距位於 C(0, 3) (見下圖)。 由上可知 ABC 是一個底長為 2 (31)、高為 3 的一個三角形。 ∴ ABC 的面積 12233。 2. 把 ) 1 )( 2 ( 3   x x x 化為部份分式。 (8 分) 答案: 利用長除法,得 ) 1 )( 2 ( 2 3 1 ) 1 )( 2 ( 3         x x x x x x x ) 1 )( 2 ( 2 3   x x x 的部份分式為 1 2 ) 1 )( 2 ( 2 3        x B x A x x x 通過比較等式兩邊的項,得 A 3 8 及 B 3 1。 ∴ ) 1 ( 3 1 ) 2 ( 3 8 1 1 2 1 ) 1 )( 2 ( 3 1 3 8 3               x x x x x x x x x 3. A 袋有 4 個紅球、6 個黄球和 10 個綠球; B 袋 有 12 個紅球、4 個黄球和 4 個綠球。若在每個袋 中隨機地抽出一個球,求以下各項的概率。 (a) 兩個球都是紅色的。 (2 分) (b) 兩個球都不是紅色的。 (2 分) (c) 最少有一個球是紅色的。 (2 分) (d) 兩個球都是紅色或兩個球都不是紅色的。 (2 分) 答案: (a) 從 A、B 袋抽出紅球的概率分別為 20 4、 20 12。從 A 袋抽球的事件顯然獨立於從 B 袋抽球的事件。 ∴ 本部份所求的概率 20 4 12 20  1 5  3 5  3 25 。 (b) 從 (a) 得本部份所求的概率        5 1 1         5 3 1  8 25 。 (c) 從 (b) 得本部份所求的概率1 8 25  17 25 。 (d) 由於 (a) 和 (b) 中的事件互斥,本部份所求的概率 3 25  8 25  11 25 。 A y B C x

(8)

4. (a) 利用圖解法解不等式組        17 3 8 5 y x y x 。 (4 分) (b) 設 C2xy,其中 (x, y) 是 (a) 中的不等式組的一個解。C 的極大值是甚麼? (4 分) 答案: (a) 題中的不等式組的圖解是 y 5 1x 5 8 的下半平面和 y3x17 的下半平面的共同區域 (包 括邊界),如下圖中的陰影部份所示。 (b) 設 L0 和 L1 分別代表直綫 2xy0 和 2xy6。從這兩條直綫的位置,可以看出將 L0 向右推 會令 C 值增加;所以應將 L0 向右推,越遠越好,但要 L0 觸碰着圖中的陰影區域。 從上圖可知 C 在 P 點達到極大化,這裏的 P 點是直綫 y 5 1x 5 8 和 y3x17 的交點。解 這兩個方程式得 P

(

11 2 , 2 1

)

。∴ C 的極大值211 2  1 2  23 2 11.5。 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 2 4 6 8 P L1 L0 x y 5 8 5 1   x y 17 3    x y -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y 5 8 5 1   x y 17 3    x y

(9)

5. (a) 設 x 和 y 為整數。證明若 xy 及 y 都可被 6 整除,那麼 x 亦可被 6 整除。 (2 分) (b) 利用 (a) 及數學歸納法證明對所有正整數 n,4n33n25n 為 6 的倍數。 (6 分) 答案: (a) 若 xy 及 y 都可被 6 整除,那麼存在整數 m 和 n 使得 xy6m 及 y6n。 ∴ x(xy)y6m6n6(mn),此為 6 的倍數。証畢。 (b) 設 S(n) 表示命題 “4n33n25n 為 6 的倍數”。 (i) 由於 4133125112 為 6 的倍數,S(1) 成立。 (ii) 假設 S(k) 對某正整數 k 成立,即假定 4k33k25k 可被 6 整除 --- (1) 從以下等式 [4(k1)3 3(k1)2 5(k1)](4k33k25k) 4(k3 3k2 3k1)3(k2 2k1)5(k1)(4k33k25k) 6(2k2 3k2) 得知 [4(k1)3 3(k1)2 5(k1)](4k33k25k) 可被 6 整除 --- (2) 利用 (2)、(1) 和 (a) 就可斷定 4(k1)3 3(k1)2 5(k1) 可被 6 整除。 換句話說,S(k1) 也成立。 根據 (i)、(ii) 和數學歸納法原理,可知 S(n) 對所有正整數 n 都成立。

(10)

Instructions:

1. This paper consists of 2 parts: Part I consists of 15 multiple choice questions, and Part II consists of 5 problem-solving questions. Answer all the questions.

2. Part I consists of 15 multiple choice questions. Each question carries 4 marks with a total of 60 marks. This part must be answered with HB pencil.

3. Part II consists of 5 problem-solving questions. Part II carries a total of 40 marks, and marks for each question are indicated at the end of the question. This part must be answered in the space provided for each question with blue or black ball pen. Show all your steps in getting the answer. Full credits will be given only if the answer and all the steps are correct and clearly shown.

4. Answers put elsewhere will not be marked or marks will not be given if candidates fail to follow the instructions.

(11)

Part I Multiple choice questions. Choose the best answer for each question.

1. As x increases from   4 to 3 4 , the value of cosx

A. always increases B. always decreases C. increases and then decreases D. decreases and then increases E. none of the above

2. The marked price of a watch is 40% above its cost. If the watch is sold at a discount of 30%, find the percentage of gain or loss.

A. gain 28% B. gain 12% C. gain 10% D. lose 2% E. lose 10%

3. In the Venn diagram, the shaded region represents

A. X(YZ) B. Xc(YZ) C. X(YZ)c

D. (XY)cZ E. (XcY)Z

4. If y x, which of the following is/are true?

I. x y II. y2 x2 III. (y x) 2x

A. II only B. III only C. I and II only

D. I and III only E. I, II and III

5. It is known that a polynomial p(x) is divisible by 2x1, and the remainder is 1 when p(x) is divided by

x1. What is the remainder if p(x) is divided by 2x2x1?

A. 3 2x 3 1 B. x 3 1 C. 3 1x 3 2 D. 3x 3 1 E. 2x 3 2

6. If a and b are the two distinct roots of the equation 2x2x50, then 1 a2 1 b2 A. 19 25 B. 25 19 C. 44 37 D. 25 21 E. 25 23 7. If 1 7 x x , then   x x 1

A.  7 B.  5 C. 3 D. 7 E. None of the above

X

Y A

(12)

8. If a2 and ax22x3, then A. 2 5    a x B. 2 5   a x C. 2 5   a x D. a x 25 E. xa52 9. If log10y 1 log10x 2 1 , then A. y 10x B. y100x2 C. y(10x)2

D. y10x2 E. None of the above

10.      2 3 1 1 2 2 2 x x x x A. ) 3 )( 1 )( 1 ( 5 2 2    x x x x x B. ) 3 )( 1 )( 1 ( 7 2 2    x x x x x C. ) 1 )( 1 )( 3 ( 5 2    xx x x D. ) 1 )( 1 )( 3 ( 5 2    xx x x E. ) 1 )( 1 )( 3 ( 7 4 2    x x x x x

11. There are 2 boys and 3 girls to attend a lecture. They take a 5 seat row in the classroom. How many different possible ways of sitting are there if 2 boys are required to sit together?

A. 12 B. 24 C. 36 D. 48 E. None of the above

12. In a geometric sequence, all numbers are positive. Any term of the sequence is always equal to the sum of the next two terms. Determine the value of the common ratio.

A. 1 B. 25 C. 2 1 5 D. 2 5 1 E. 5 2

13. Find the area of the inscribed regular octagon in a circle of radius 1.

A. 2 B. 2 2 C. 3 2 D.  2 E. 4 2

14. If tan2, where  lies in the third quadrant, what is the value of sincos? A. 2 1  B. 5 1  C. 5 3  D. 5 1 E. 5 3

15. If two lines axbyc0 and pxqyr0 are perpendicular, which of the following is true?

A. aqbp B. apbq0 C. acbr

(13)

Part II Problem-solving questions.

1. Suppose the parabola yx24x3 intersects the x-axis at points A and B, and intersects the y-axis at

point C. Determine the area of ABC. (8 marks)

2. Find the partial fraction decomposition of

) 1 )( 2 ( 3   x x x . (8 marks)

3. In Bag A there are 4 red balls, 6 yellow balls and 10 green balls. In Bag B there are 12 red balls, 4 yellow balls and 4 green balls. If one ball is randomly selected from each bag, find the probability that

(a) both balls are red. (2 marks)

(b) both balls are not red. (2 marks)

(c) at least one ball is red. (2 marks)

(d) both balls are red or both balls are not red. (2 marks)

4. (a) Solve the system of inequalities

       17 3 8 5 y x y x graphically. (4 marks)

(b) Let C2xy, where (x, y) is a solution of the system of inequalities in (a). What is the maximum

value of C? (4 marks)

5. (a) Let x and y be integers. Prove that if both xy and y are divisible by 6, so is x. (2 marks)

(b) Use (a) and mathematical induction to show that 4n33n25n is a multiple of 6 for all positive

(14)

Suggested Answer

Part I Multiple choice questions.

Question Number Best Answer

1 C 2 D 3 E 4 E 5 A 6 D 7 B 8 D 9 B 10 E 11 D 12 C 13 B 14 B 15 B

(15)

Part II Problem-solving questions.

1. Suppose the parabola yx24x3 intersects the x-axis at points A and B, and intersects the y-axis at

point C. Determine the area of ABC. (8 marks)

Ans.: Since x24x3(x1)(x3), the x-intercepts of the parabola are at A(1, 0) and B(3, 0). Since the

constant term of the quadratic polynomial is 3, the y-intercept is at C(0, 3) (see the picture below).

∴ ABC can be considered as a triangle of base length 2 (31) and of height 3. ∴ area of ABC 1

2233.

2. Find the partial fraction decomposition of

) 1 )( 2 ( 3   x x x . (8 marks)

Ans.: Performing long division enables us to write

) 1 )( 2 ( 2 3 1 ) 1 )( 2 ( 3         x x x x x x x .

The partial fraction decomposition of

) 1 )( 2 ( 2 3   x x

x has the form

1 2 ) 1 )( 2 ( 2 3        x B x A x x x .

Comparing terms on both sides yields A 3 8 and B 3 1. ∴ ) 1 ( 3 1 ) 2 ( 3 8 1 1 2 1 ) 1 )( 2 ( 3 1 3 8 3               x x x x x x x x x .

3. In Bag A there are 4 red balls, 6 yellow balls and 10 green balls. In Bag B there are 12 red balls, 4 yellow balls and 4 green balls. If one ball is randomly selected from each bag, find the probability that

(a) both balls are red. (2 marks)

(b) both balls are not red. (2 marks)

(c) at least one ball is red. (2 marks)

(d) both balls are red or both balls are not red. (2 marks)

Ans.: (a) The probabilities of drawing a red ball from Bag A and Bag B are respectively 20 4 and 20 12. The event of drawing a ball from Bag A is clearly independent of the event of drawing a ball from Bag B. ∴ The required probability of this part 4

20  12 20  1 5  3 5  3 25 . (b) From (a), the required probability of this part 

      5 1 1         5 3 1  25 8 . (c) From (b), the required probability of this part1 25 8  25 17.

(d) Since the events in (a) and (b) are mutually exclusive, the required probability of this part 25 3  25 8  25 11.

A y

B

C

(16)

4. (a) Solve the system of inequalities        17 3 8 5 y x y x graphically. (4 marks)

(b) Let C2xy, where (x, y) is a solution of the system of inequalities in (a). What is the maximum

value of C? (4 marks)

Ans.: (a) The graphical solution of the given inequalities is the common region of the lower half-plane of y

 1 5 x

8

5 and the lower half-plane of y3x17 (including the boundary), which is shown as the shaded area in the picture below.

(b) Let L0 and L1 denote respectively the lines 2xy0 and 2xy6. By considering the positions of

these 2 lines, we see that parallel shifts in the line L0 to the right produce bigger values of C, therefore,

we have to move L0 to the right as far as possible while L0 remains touching the shaded region.

The above picture shows that the value of C is maximized at the point P, which is the intersection of

y 5 1x 5 8 and y3x17. Solving these equations, we get P

(

11 2 , 2 1

)

. ∴ Maximum value of C211 2  1 2  23 2 11.5. -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 2 4 6 8 P L1 L0 x y 5 8 5 1   x y 17 3    x y -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 2 4 6 8 x y 5 8 5 1   x y 17 3    x y

(17)

5. (a) Let x and y be integers. Prove that if both xy and y are divisible by 6, so is x. (2 marks)

(b) Use (a) and mathematical induction to show that 4n33n25n is a multiple of 6 for all positive

integers n. (6 marks)

Ans.: (a) If both xy and y are divisible by 6, then xy6m and y6n for some integers m and n.

∴ x(xy)y6m6n6(mn), which is a multiple of 6. This completes the proof.

(b) Let S(n) denote the statement “4n33n25n is a multiple of 6”.

(i) S(1) is true ∵ 4133125112, which is a multiple of 6.

(ii) Assume S(k) is true for some positive integer k, that is 4k3

3k2

5k is divisible by 6 --- (1) From the following equalities

[4(k1)3 3(k1)2 5(k1)](4k33k25k) 4(k3 3k23k1)3(k22k1)5(k1)(4k33k25k) 6(2k2 3k2) we see that [4(k1)3 3(k1)2 5(k1)](4k33k25k) is divisible by 6 --- (2)

Using (2), (1) and (a), we conclude that 4(k1)33(k1)25(k1) is divisible by 6. This means that S(k1) is also true.

參考文獻

相關文件

In the following we prove some important inequalities of vector norms and matrix norms... We define backward and forward errors in

Theorem 5.6.1 The qd-algorithm converges for irreducible, symmetric positive definite tridiagonal matrices.. It is necessary to show that q i are in

A Boolean function described by an algebraic expression consists of binary variables, the constant 0 and 1, and the logic operation symbols.. For a given value of the binary

Read the Poster for the Shatin Festival of Performing Arts Song Writing Competition (Text 1) and answer questions 1-5.. Blacken the circle

• Learn strategies to answer different types of questions.. • Manage the use of time

Associate Professor, Kyushu University.. At the end of the antarakalpa most of mankind perish. The Part 2 is the main part of this paper and points out the

• Definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and t he right subtree2.

The algorithm consists of merging pairs of 1-item sequences to form sorted sequences of length 2, merging pairs of sequences of length 2 to form sorted sequences of length 4, and so