• 沒有找到結果。

使用週期靜態方法之擴充式演算法估計在無線電通道之頻率偏移及符號時間

N/A
N/A
Protected

Academic year: 2021

Share "使用週期靜態方法之擴充式演算法估計在無線電通道之頻率偏移及符號時間"

Copied!
42
0
0

加載中.... (立即查看全文)

全文

(1)

國立交通大學

電機與控制工程學系

碩士論文

使用週期靜態方法之擴充式演算法估計

在無線電通道之頻率偏移及符號時間

Generalized Algorithms Using Cyclostationary

Approach for Frequency Offset and Symbol Timing

Recovery in Wireless Channel

研究生:陳逸帆

指導教授:鄭木火博士

(2)

UàU‚ÓGj¶5Økƶ,lÊÌ(Ú¦

−5ä0R£¯UvÈ

û˝Þ: ÏTÔ

Nû`¤: wƒÊ²=

Å >¦×çÚœD−„ ˙çÍ

¿b

ÊbP¦mÍ$, àS,lmU2íä0R (frequency offset) £vÈR (timing offset) uø_ '½bí{æ d.2rÖj¶êV,¿¥s_¡b, ¥<j¶×_,ª–}Ñ’e.Œ (data-aided) DÝ’e.Œ (nondata-aided) sé, ’e.Œ3bu‚àäN¯U (pilot symbols) Co*å (train-ing sequences) VªW,¿; 7Ý’e.Œíj¶, Î7‚à=‡0 (cyclic prefix) Õ, ¡V, 6r Öd.«n‚àU‚ÓG4 (cyclostationary) íÔ4VdÝ’e.Œí,¿¤ù¡b …dû˝í{æ 6uʤ U‚ÓGíj¶3bu‚àmUóÉ (correlation) xí$lÔ4, Vv|£üíä0R DvÈÏÏ Ûíj¶2 F. Gini ¸ G. B. GiannakisJU‚ÓG4íÔ4,lÀ-šÍ$5ä0R £vÈR; 7 H.Bolcskei †uàV,l£>ä0Ö½f (OFDM) Í$5ä0R£vÈR .¬ ¤ùj¶ÊRûvIø<‘K, J_ÊUà,íÌ„ à‡øƶ, É?Ê0§c˙šÂ (pulse sharping filter) 5ä üB¯¯ø<‘K-nª£üí,¿; 7(6FTíƶ†âkúÝcbívÈ ôbRûø<¡j, É?_àk,¿cbI¦šU‚ívÈRÏÏ …d2‡ú¥<§Ìí8$, ½ hRû|øyêcíÍ$_, 1T|ø_Økíƶª_àky˜í=12 1‚àÚ7_Òð„ Hƶí¡jD¿thƶÊÌ(Ú¦−,í,¿[Û

(3)

Generalized Algorithms Using Cyclostationary Approach

for Frequency Offset and Symbol Timing Recovery in

Wireless Channels

Student: YI-FAN CHEN

Advisor: Dr. Mu-Huo Cheng

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

It is important to estimate the frequency offset and timing offset in a digital communication system. Many approaches have been developed in literature. These approaches can be roughly categorized into two classes, data-aided and nondata-aided categories. The data-aided scheme uses preamble information such as pilot symbols or training sequences while the nondata-aided scheme may use cyclic prefix or use the property of cyclostationarity for estimation. This thesis focuses on the cyclostationary approach. The cyclostationary approach uses the statistic auto-correlation of received signal to estimate both frequency offset and time offset. One well-known algorithm developed by F. Gini and G. B. Giannakis is to estimate timing and frequency offsets in a single carrier system and the other popular algorithm, proposed by H. Bolcskei, is used in orthogonal frequency division multiplexing (OFDM) systems. But in these two algorithms there exists some pitfalls. The first algorithm only can work if the bandwidth of the pulse shaping filter is narrow enough to satisfy certain constraint which is derived in this thesis; the second algorithm can only work when the time offset is an integer. In this thesis, we formulate exactly the model and derive the conditions under which these existing algorithms can be applied; we further develop new generalized algorithms for estimating frequency offset and timing offset in single carrier systems as well as OFDM systems; these algorithms are general because the re-strictions of two existing methods can be alleviated. Computer simulations are also performed to illustrate the pitfalls of existing approaches and advantages of presented algorithms.

(4)

Ðá

¤d?ß‚êA, bԁöyË>áBíNû`¤wƒÊ`¤, Ê¥ssísû˝Þ®2, Ìu &AQÓíy^ö£CµçGíÃã-, ÌUBÊÞº£ç…,×ïGÖ ĤʅdGF5Ò, ú k:£f−¤“í4_,|y£íá< ʨt‚ÈwPŠÀé`¤ Š-‡`¤¸†ƒ¼`¤Æ˛N£1TXrÖ£í<c ʤ>á5b í: °v>áH“çÅyÞ ðû õã ï€í‹“H−, J£õðíFAº:  ‰ï \ ¨ ¼ ÅQ P+ ُ Áó 6›Ê{“,í~}n£Þº,í¡;®x, ÑÓÀ|íû˝Þº Ó¼.ýH˘

|(b>áBíÂf£ðA, âkFbíG|¸.iË2¥, éB?Ì(è5Rí*9û˝, ß‚êA ç“, 1/?‰Þú-øší˚ØD‘D

(5)

ñ“

2d¿b i Ld¿b ii Ðá iii Çñ“ vi 1 é 1 1.1  . . . 1 1.2 û˝ñíDd.è . . . 1 1.3 d-Z . . . 2 2 À-šÍ$í,¿j¶ 3 2.1  . . . 3 2.2 Í$_ . . . 3 2.3 U‚ÓGÔ4 . . . 4 2.4 ÔyWD“ . . . 7 2.5 l=óÉ . . . 9 2.6 _Ò!‹ . . . 10 2.6.1 Uà¯ìý0§c$˙šÂí,¿. . . 10 2.6.2 Uà×ä í0§c˙šÂví,¿ . . . 10 3 £>ä0Ö½fÍ$í,¿j¶ 17 3.1  . . . 17

(6)

3.2 Í$_ . . . 17 3.3 U‚ÓGÔ4 . . . 18 3.4 ,¿j¶ . . . 19 3.5 D H.Bolcskei FT|íj¶ªœ . . . 20 3.6 ÔyW . . . 21 3.7 ,=óÉ . . . 21 3.8 _Ò!‹ . . . 22 4 ! 29 A Ë“ 30 ¡5d. 33

(7)

Çñ“

Ç 2.1 Gc(f ) ý<Ç . . . 7

Ç 2.2 Gc(β) £ Gc(β − (k − P )/T )ý<Ç . . . 8

Ç 2.3 Gc(β) £ Gc(β − (k + P )/T )ý<Ç . . . 9

Ç 2.4 (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$, fe = 0.3 ,  = 0.3 . 10

Ç 2.5 (a) Bias and (b) MSE of ˆfe versus fe , Uà¯ìý0§c$, SNR = 16dB . . . . 11

Ç 2.6 (a) Bias and (b) MSE of ˆ versus SNR , Uà¯ìý0§c$, fe = 0.3 ,  = 0.3 . 11

Ç 2.7 (a) Bias and (b) MSE of ˆ versus  , Uà¯ìý0§c$, SNR = 16dB . . . 12 Ç 2.8 (a) Bias and (b) MSE of ˆ versus SNR , Uà¯ìý0§c$, Uà [1]íj¶ . . . 12 Ç 2.9 (a) Bias and (b) MSE of ˆ versus  , Uà¯ìý0§c$, Uà [1]íj¶. . . 13 Ç 2.10 (a) Bias and (b) MSE of ˆfe versus SNR , Uà×ä í¯ìý0§c$˙šÂ,

fe = 0.3 ,  = 0.3 . . . 13

Ç 2.11 (a) Bias and (b) MSE of ˆfe versus fe , Uà×ä í¯ìý0§c$˙šÂ, SNR

= 16dB . . . 14 Ç 2.12 (a) Bias and (b) MSE of ˆ versus SNR , Uà×ä í¯ìý0§c$˙šÂ, fe = 0.3 ,  = 0.3 . . . 14

Ç 2.13 (a) Bias and (b) MSE of ˆ versus  , Uà×ä í¯ìý0§c$˙šÂ, SNR = 16dB . . . 15 Ç 2.14 (a) Bias and (b) MSE of ˆ versus SNR , Uà×ä í¯ìý0§c$˙šÂ, Uà [1]íj¶, fe= 0.3 ,  = 0.3 . . . 15

Ç 2.15 (a) Bias and (b) MSE of ˆ versus  , Uà×ä í¯ìý0§c$˙šÂ, Uà [1]íj¶, SNR = 16dB . . . 16 Ç 3.1 ¯ìý0§c$˙šÂ . . . 22

(8)

Ç 3.2 (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U ne = 3.3 ,

θe= 0.1 . . . 23

Ç 3.3 (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,512 ¯U ne = 3.3 ,

θe= 0.1 . . . 23

Ç 3.4 (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2],

ne = 3.3 , θe = 0.1 . . . 24

Ç 3.5 (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2]

ne = 3.3 , θe = 0.1 . . . 24

Ç 3.6 (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U, ne = 5 ,

θe= −0.2. . . 25

Ç 3.7 (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,512 ¯U, ne = 5 ,

θe= −0.2. . . 25

Ç 3.8 (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2],

ne = 5 , θe= −0.2 . . . 26

Ç 3.9 (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2],

ne = 5 , θe= −0.2 . . . 26

Ç 3.10 (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,128 ¯U, ne = 3.3

, θe = 0.3 . . . 27

Ç 3.11 (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,128 ¯U, ne = 3.3

, θe = 0.3 . . . 27

Ç 3.12 (a) Bias and (b) MSE of ˆne versus SNR , Ö½˜¦−, Uà¯ìý0§c$,512

¯U, ne = 3.3 , θe= 0.3. . . 28

Ç 3.13 (a) Bias and (b) MSE of ˆfe versus SNR , Ö½˜¦−, Uà¯ìý0§c$,512

(9)

 1 ı

é

1.1



bP¦mÍ$âk§ƒf] (propagation) ·$ ^@ (Doppler effect) £f«DQY«ËÓ í.®ºÄÖ¨A„øívÈR (timing offset) J£ä0R (frequency offset), Ñ7ªJ£ü íj||Ÿ…í’e, .âbÄüí,¿|¥s_^@í×ü, nªüõí^k… rÖí,¿j¶˛%\ T|, ¨Ž’e.Œ (data-aided) C6uÝ’e.Œ (nondata-aided) í$ ׶}í,¿j¶Ûbä N¯U (pilot symbols) Co*å (training sequences) Uà¥<.Œí’eªJÁ/,¿íµÆ, O°v}±Q’e0 (data rate); C6/<v`;…̶×)¥<’mv, Ĥ.âbUàÔñí,¿j ¶ (blind estimation) ûè'ÖóÉd.[1][2][3][4](êÛU‚ÓGíÔ4ª“VdÔñí,¿, FJ d2JU‚ÓGÔ4Ñ!€, }«nÀ-š (single carrier) D£>ä0Ö½f (OFDM) Í$í,¿ j¶

1.2

û˝ñíDd.è

øÇáû˝½õ[Ê£>ä0ä0Ö½fÍ$í°¥,, ÄÑä0ÏÏú£>ä0ä0Ö½fÍ$ œw…À-šÍ$y×í à,[5][6][7][8][9]2T|7rÖ.°í,¿j, .¬îÑ‹o*åí$” V,¿, 7 [2][3][4][10]díuÔñí,¿[10]‚àíu‹,=‡0 (cyclic prefix) (ðÞ|Ví½µÔ 4Vd,¿, 7[2][3][4]†u‚àU‚ÓGíÔ4 âkúU‚ÓG'×íE, ¡5 H.Bolcskei[2]íd ı³ÞÜ7‚àU‚ÓGV,¿£>ä0ä0Ö½fÍ$ä0RDvÈRíƶ, .¬âk¤j ¶Rû2ø<˜Ï, Ĥy£¥<˜Ï1½hRû|£üíƶ‰uBbû˝íñ™5ø Ñ7y7j U‚ÓGíÔ4, ./û˝À-šÍ$-í,¿, Ó F.Gini D G.B. Giannakis[1]íÜ1T|^Z¬ í,¿Æ¶Jˇúø<HƶíÌ„

(10)

 1 ı é

1.3

d-Z

…d-Zà-: ùıÜÀ-šÍ$í,¿¨Öƶ£_Ò!‹, úıÜ£>ä0ä0Ö½ fÍ$í,¿¨Öƶ£_Ò!‹, ûıÑc¹dín, Ë“2¨ÖFú"2íRû

(11)

 2 ı

À-šÍ$í,¿j¶

2.1



¥_ı³ÜÌ(bP¦mÍ$àS‚àQYƒmUA™íóÉ (correlation) N¬¬¦š (over-sampling) ù|U‚ÓG (cyclostationary) Ô4Vdä0R (frequency offset) DvÈR (timing offset) í,¿, .ÛbçÕío*¯U (training symbols) C6u’e.Œ (data-aided) í6ŒZªª Wø_^íÔñ,¿ (blind estimation), /ªJ}«Á (flat fading) úmUíú; ¤ÕD F. Gini ¸ G. B. Giannakis[1]d2FTƒíj¶dªœ, 1‚àÚ7_Òð„c_ƶí£ü4

2.2

Í$_

(4|‰ímU%¬«Á (flat fading) í¦−(, ª[ýÑ [1] rc(t) = µc(t)ej(2πfet+θ)

X

l

w(l)gc(tr)(t − T − lT ) + nc(t) (2.1)

w2 µc(t) Ñ«ÁßÞíIbÆm, T ѯUíU‚, gctr(t) Ñf«ímU0§$, nc(t) ÑÆm, w(l)

ѵbí’e¯U, fe Ñä0R, θ u–áíi, T Ñfôb/ 0 ≤  < 1  %¬QY«í®º˙

šÂ (matched filter) gc(rec)(t) (, mU xc(t) = rc(t)∗gc(rec)(t)

à-xc(t) = ej(2πfet+θ) X l w(l)[µc(t)gc(tr)(t − T − lT )] ∗ [gc(rec)(t)e −j2πfet ] (2.2) cq µc(t) Êø_¯UU‚ (symbol period) vÈq¡Nø_b, ²Æuz, ·  Øà (Doppler

spread) BµT 'ü, w2 Bµ H[ µc(t) íä  /cqä0R fe óúk¯U0 (symbol rate) üí

Ö, ¤vâä0R¨Aí gc(rec)(t) .®º8$ªI, øOVz feT ≤ 0.2 ѯÜícq [1] †%â¬

¦š (oversampling), w¦šä0Ñ P/T , P Ñøcb, ª×)¡Ní×àvÈ’e: x(n) = µ(n)ej(2πPfeT n+θ)X

l

(12)

 2 ı À-šÍ$í,¿j¶ w2 x(n) := xc(t)t=nT /P , µ(n) := µc(t)|t=nT /P , v(n) := nc(t)∗gc(rec)(t)|t=nT /P , ¢ g(n) :=

gc(t − T )|t=nT /P , gc(t) Ñf«DQY«˙šÂí!¯ gc(t) := gc(tr)(t)∗gc(rec)(t) (2.3) 2í¡bBb

d7ø<cq:

• w(n) ÑÌMÑÉí i.i.d å, wMu*̯U (finite-alphabet) µbrèÇ (constellation) 2‘²|V, ¢‰æ¾ (variance) Ñ σ2

w

• µ(n) ÑÓG (stationary) íµb˙åwAóÉì2Ñ m2µ(τ ) := E{µ(n)µ∗(n + τ )} , m2µ(τ )

íZ sž²˚d·  ä$ (Dopper spectrum)

• v(n) uø2ÓG4 (wide-sense stationary) íµb˙å

2.3

U‚ÓGÔ4

x(n) íóÉ}ÓOvÈZ‰, ì2 m2x(n; τ ) := E{x(n)x∗(n + τ )} , w2 τ uø_cbíôb

à‹ m2x(n; τ ) = m2x(n + kP ; τ ) ∀ n, k , †˚mU x(n) xU‚ÓGíÔ4 l (2.3) íóɪ ) m2x(n; τ ) = σ2wm2µ(τ )e −j(2π P)feT τX l g(n − lP )g∗ (n + τ − lP ) + m2v(τ ) (2.4) Ñ7üwu´xU‚ÓGíÔ4, ø (2.4) 2í n J n + kP Hp m2x(n + kP ; τ ) = σw2m2µ(τ )e −j(2π P)feT τ X l g(n + kP − lP )g∗ (n + kP + τ − lP ) + m2v(τ ) = σ2 wm2µ(τ )e −j(2π P)feT τ X i g(n − iP )g∗ (n + τ − iP ) + m2v(τ ) = m2x(n; τ ) (2.5) úø_ ìí τ 7k,(2.5) ª„p m2x(n; τ ) ú n uJø_ P íU‚ʉ“, Ĥªl|…íZ s bí[bÑ M2x(k; τ ) := (1/P )PP −1n=0m2x(n; τ ) exp(−j(2π/P )kn) ú k ø_U‚ P , M2x(k; τ )

\˚=óÉ (cyclic correlation) / {2πk/P, k = −P/2, · · · , P/2 − 1} ˚Ñ=ä0 (cyclic fre-quencies)  * (2.4) ªRû| M2x(k; τ ) = σ2 w P m2µ(τ )e −j(2π P)feT τ X n g(n)g∗ (n + τ )e−j(2π P)kn+ m 2v(τ )δ(k) (2.6)

(13)

 2 ı À-šÍ$í,¿j¶ âk  ¥_¡bÊçBbø (2.1) žÑ (2.3) v˛%\ g(n)F¨Ö, Ñ7½héý| M2x(k; τ ) D  í

É[, à G(f ) :=P

ng(n) exp(−j2πf n) H[ g(n) íZ sž²1‚à Parseval’s relation

X n g(n)g∗ (n + τ )e−j(2π P)kn = Z 0.5 −0.5 G∗  β − k P  G(β)e2πβτdβ (2.7) è g(n) := gc(t − T )|t=nT /P , 1cq gc(t) íä  Bgük P/(2T ) ; 6ÿuz¦šä0 P/T Å— Nyquist ¦šìÜ, .}ßÞ>L (aliasing), ;W¦šÜª) G(f ) = 1 Ts ∞ X k=−∞ Gc( f Ts − k Ts )e−j2π(f Ts− k Ts)T = 1 Ts ∞ X k=−∞ Gc( f − k Ts )e−j2π(f −k)P (2.8) w2 Gc(f ) := R∞ −∞gc(t)e −j2πf t dt , ¢ Ts= T /P ѦšU‚ ç³>Lv,(2.8) Ê |f | ≤ 0.5 í¸ˇ qª“Ñ G(f ) = 1 Ts Gc( f Ts )e−j2πf P , for |f | ≤ 0.5 (2.9) ø (2.9) Hp (2.7), Í( (2.7) Hp (2.6), ç 0 ≤ k ≤ P/2 − 1 , ª) M2x(k; τ ) = σ2 w P m2µ(τ )e −j(2π P)feT τ Z 0.5 −0.5 G∗  β − k P  G(β)e2πβτdβ + m2v(τ )δ(k) = σ 2 w P m2µ(τ )e −j(2π P)feT τ Z 0.5 −0.5+k/P G∗  β − k P  G(β)e2πβτdβ + Z −0.5+k/P −0.5 G∗  β − k P + 1  G(β)e2πβτ ) + m2v(τ )δ(k) = σ 2 w P T2 s m2µ(τ )e−j( 2π P)feT τe−j2πk Z 0.5 −0.5+k/P G∗ c  β − k/P Ts  Gc( β Ts )e2πβτdβ +ej2πP Z −0.5+k/P −0.5 G∗ c  β − k/P + 1 Ts  Gc( β Ts )e2πβτdβ ) + m2v(τ )δ(k) = σ 2 w P T2 s m2µ(τ )e −j(2π P)feT τe−j2πk Z 0.5 −0.5 G∗ c  β − k/P Ts  Gc( β Ts )e2πβτdβ +ej2πP Z 0.5 −0.5 G∗ c  β − k/P + 1 Ts  Gc( β Ts )e2πβτdβ  + m2v(τ )δ(k) (2.10) ÇøjÞ, ç −P/2≤k < 0 v, M2x(k; τ ) = σ2 w P m2µ(τ )e −j(2π P)feT τ Z 0.5 −0.5 G∗  β − k P  G(β)e2πβτdβ + m2v(τ )δ(k)

(14)

 2 ı À-šÍ$í,¿j¶ = σ 2 w P m2µ(τ )e −j(2π P)feT τ ( Z 0.5+k/P −0.5 G∗  β − k P  G(β)e2πβτdβ + Z 0.5 0.5+k/P G∗  β − k P − 1  G(β)e2πβτdβ  + m2v(τ )δ(k) = σ 2 w P T2 s m2µ(τ )e −j(2π P )feT τe−j2πk ( Z 0.5+k/P −0.5 G∗ c  β − k/P Ts  Gc( β Ts )e2πβτdβ +e−j2πP Z 0.5 0.5+k/P G∗ c  β − k/P − 1 Ts  Gc( β Ts )e2πβτdβ  + m2v(τ )δ(k) = σ 2 w P T2 s m2µ(τ )e −j(2π P )feT τe−j2πk Z 0.5 −0.5 G∗ c  β − k/P Ts  Gc( β Ts )e2πβτdβ +e−j2πP Z 0.5 −0.5 G∗ c  β − k/P − 1 Ts  Gc( β Ts )e2πβτdβ  + m2v(τ )δ(k) (2.11) ì2 G2(k; τ ) := (P/T )R−P/2TP/2T G ∗ c(β − k/T )Gc(β)ej2πβτ T /Pdβ , † (2.10),(2.11) ªŸÑ M2x(k; τ ) = ( σ2 w P m2µ(τ )e −j(2π P)feT τe−j2πk G2(k; τ ) + ej2πPG2(k − P ; τ ) , 0 < k ≤ P 2 − 1 σ2 w P m2µ(τ )e −j(2π P)feT τe−j2πk G2(k; τ ) + e−j2πPG2(k + P ; τ ) , −P 2 ≤ k < 0 (2.12) Q-Vø½æÌìÊM«Á (slow fading) íÕ”, †ú—Düí τ (¸ˇâ·  Øà (Doppler spread) ²ì), m2µ(τ ) ≈ m2µ(0) Ñøõbíb, ˚…Ñ σµ2 ²¦ k = K , KÑø£cb, / K ük P/2 , ÄÑ G2(−k; τ ) = G2 ∗ (k, τ ) , FJ M2x(−K; τ )ªZŸAà-: M2x(−K; τ ) = σ2 wσµ2 P e −j(2π P)feT τe−j2πK G2(K; τ ) + ej2πPG2(K − P ; τ ) ∗ (2.13) °v M2x(K; τ ) = σ2 wσ2µ P e −j(2π P)feT τe−j2πK G 2(K; τ ) + ej2πPG2(K − P ; τ )  (2.14) FJŽO (2.13) £ (2.14) ªJ,¿| ˆ fe= − P 4πT τ arg{M2x(K; τ )M2x(−K; τ )} (2.15) Ou  í,¿j¶ÿªœµÆ, ílùà,¿|í ˆfe, ì2 M(K; τ ) = P σ2 w ej(2πP) ˆfeT τM 2x(K; τ ) (2.16) ‚às_.°í τ , Í(ªû|  G2(K; τ1) G2(K − P ; τ1) G2(K; τ2) G2(K − P ; τ2)   σ2 µe −j2πk σ2 µej2π(P −k)  = M(K; τ1) M(K; τ2)  (2.17)

(15)

 2 ı À-šÍ$í,¿j¶ Q-Vì2ø_ªW[b η à-η = ( 1 , if G2(K − P ; τ1) = G2(K − P ; τ2) = 0 G2(K−P ;τ1) G2(K−P ;τ2) , otherwise. (2.18) ‚à (2.17) D η ªJ,¿| ˆ  = − 1 2πk]  M(K, τ1) − η M(K, τ2) G2(K; τ1) − η G2(K; τ2)  (2.19)

2.4

ÔyWD“

粦í k D P Å—/<Ì„v, M2x(k; τ ) ªJ\“AÀí$, Ê (2.12) 2, ªœnÀíu Ö7 ej2πPG 2(k − P ; τ ) D e−j2πPG2(k + P ; τ ) ¥sá, FJ«nSv¥sáí^‹kÉ, ZªJø “rÖ, à¤ZªJ×Ù±QlíµÆ *ä$,Võ, cq Gc(f ) ø_ä Ñ Bg , Ç2.1 Ñ Gc(f ) íý<Ç − Ç 2.1: Gc(f ) ý<Ç l«n 0 < k ≤ P/2−1 8$, Ñ7ôI (2.12) 2í ej2πPG 2(k −P ; τ ) , FJ.âé G2(k −P ; τ ) k É, ¢ G2(k−P ; τ ) = (P/T ) RP/2T −P/2TG ∗ c(β−(k−P )/T )Gc(β)e −j2πβτ T /P dβ , w2í G∗ c(β−(k−P )/T ) D Gc(β) íÇ$àÇ2.2 Fý hôÇ2.2¹ªêÛ, ç (k − P )/T + Bg ≤ −Bg v, G2(k − P ; τ )ÿ}kÉ, âk k í|× MÑ P/2 − 1 , cÜ(ª) P ≥ 4BgT − 2 yõ −P/2 ≤ k < 0 í¶M, Bbíñ™ué G2(k + P ; τ ) kÉ, ÄÑ G2(k + P ; τ ) = (P/T )RP/2T −P/2T G ∗ c(β − (k + P )/T )Gc(β)e−j2πβτ T /Pdβ , hôÇ2.3, ªêÛç (k + P )/T − Bg ≥ Bg v¹ª, âk k |üMÑ −P/2, ĤFbÅ—í‘KÑ P ≥ 4BgT  FJ!¯c_ k í¸ˇ)ƒ|(í

(16)

 2 ı À-šÍ$í,¿j¶ − β β − β − − β − − + − Ç 2.2: Gc(β) £ Gc(β − (k − P )/T )ý<Ç ‘KÑ P ≥ 4BgT (2.20) ,!,Þí!‹ªJ¦Ñ|Éb P Å— (2.20), ÿªJôI¥ ej2πPG 2(k−P ; τ ) D e −j2πP G2(k+P ; τ ) ¥sá, |( (2.12) ÿ‰A M2x(k; τ ) = σ2 w P m2µ(τ )e −j(2π P)feT τe−j2πkG2(k; τ ) , −P 2 < k ≤ P 2 − 1 (2.21) FJç P ²ÏíD×v, M2x(k; τ ) Z}uø_œÀí, /¥_D Gini and Giannakis[1]R

ûí!‹øš, OuFbíRû¬˙2<˜Ï, ³·<ƒÛbÅ— (2.20) í‘Kn?A , .¬Éb² í P —D×Å— (2.20), ZªJà Gini and Giannakis[1]d2Tƒíj¶V,¿7.}˜Ï, j¶à -ˆ fe = − P 4πT τ arg  M2x(k; τ )M2x(−k; τ ) G2(k; τ )G2(−k; τ )  (2.22) ˆ = − 1 2πkarg ( M2x(k; τ )ej(2π/P ) ˆfeT τ G2(k; τ ) ) (2.23)

(17)

 2 ı À-šÍ$í,¿j¶ − β β − β + − β − + − + Ç 2.3: Gc(β) £ Gc(β − (k + P )/T )ý<Ç C6BbªJz‘Kš[ øõ, Éb |k| ≤ P −2BgT , ZªJôIej2πPG2(k−P ; τ ) D e−j2πPG2(k+ P ; τ ) ¥sá úk¥_¸ˇqí k ÿªJUà (2.22) £ (2.23) V,¿ fe D  

2.5

l=óÉ

è m2x(n; τ ) = E{x(n)x∗(n + τ )} , .¬BbÉ?àÌí¦šÌ (sample mean) V¡N, c

qBb L ª’e ˆ m2x(n; τ ) = P L L/P −1 X l=0 x(n + lP )x∗ (n + τ + lP ) , n = 0, 1, · · · P − 1 (2.24) † ˆ M2x(k; τ ) = 1 P P −1 X n=0 ˆ m2x(n; τ )e −j2πkn P (2.25) C6òQl ˆ M2x(k; τ ) = 1 L L−1 X n=0 x(n)x∗ (n + τ )e−j2π Pkn (2.26) é7qc, à‹L.D×, µZ}×íÏÏßÞ

(18)

 2 ı À-šÍ$í,¿j¶

2.6

_Ò!‹

2.6.1 Uà¯ìý0§c$˙šÂí,¿

²Ï α = 0.5 í¯ìý (raised cosine) Vd0§c$ (pulse shaping), 1‚à 512 _¯UVl M2x , ‘² P = 4 6ÿuûI¦šä0V¦š, ÄÑ˙šÂíä Ñ 0.75/T , FJ P = 4 ¹ªÅ— (2.20) í‘K, }‚àBbT|íj¶D [1]2íj¶V¿t, _Ò!‹u*ûìŸ_ÒíÌ8$V× ), ¿tàí fe Ñ 0.3,  6u0.3, lõSàBbíj¶í_Ò!‹, Ç2.4DÇ2.5Ñä0Rí,¿!‹, Ç2.6£Ç2.7ývÈRí,¿8$ Q-VõUà[1]T|j¶í,¿!‹, ä0R,¿âkj¶ø 5 10 15 20 25 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 SNR bias(fe) (a) 5 10 15 20 25 10−4 10−3 10−2 SNR MSE(fe) (b)

Ç 2.4: (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$, fe = 0.3 ,  = 0.3

š, FJ!‹6øš, Z.‹Jý, Ç2.8DÇ2.9[ývÈRí,¿!‹ 2.6.2 Uà×ä í0§c˙šÂví,¿ Ñ7b_Ò˙šÂä .¯¯ (2.20) í8$, .âblßÞø_ä œ×í0§c$ (pulse shaping) ˙šÂ, FJ‚àø_Êv,9òsIí¯ìý˙šÂV_Ò, à¤Zªøä [×sI, ²í α = 1 , FJc_ä Ñ 2/T , .Å— (2.20), }‚àBbT|íj¶D [1]2íj¶V,¿ fe D   lõ‚àBbT|íj¶,¿í!‹, Ç2.10DÇ2.11éýä0R,¿í_Ò!‹, Ç2.14éývÈ R,¿í_Ò!‹ Q-Võ‚à [1]FTj¶,¿í8$, âkä0Rí,¿juøší, FJB bÉõvÈRí¶M, Ç2.12DÇ2.13}[ý  ,¿Mú SNR D  퉓8$

(19)

 2 ı À-šÍ$í,¿j¶ −0.2 −0.1 0 0.1 0.2 −0.01 −0.005 0 0.005 0.01 fe bias(fe) (a) −0.2 −0.1 0 0.1 0.2 10−4 10−3 10−2 fe MSE(fe) (b)

Ç 2.5: (a) Bias and (b) MSE of ˆfe versus fe , Uà¯ìý0§c$, SNR = 16dB

5 10 15 20 25 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 SNR bias( ε) (a) 5 10 15 20 25 10−5 10−4 10−3 10−2 SNR MSE( ε) (b)

(20)

 2 ı À-šÍ$í,¿j¶ −0.4 −0.2 0 0.2 0.4 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 ε bias( ε) (a) −0.4 −0.2 0 0.2 0.4 10−4 ε MSE( ε) (b)

Ç 2.7: (a) Bias and (b) MSE of ˆ versus  , Uà¯ìý0§c$, SNR = 16dB

5 10 15 20 25 −5 −4 −3 −2 −1 0 1 2 3 4 5x 10 −3 SNR bias( ε) (a) 5 10 15 20 25 10−6 10−5 10−4 10−3 SNR MSE( ε) (b)

(21)

 2 ı À-šÍ$í,¿j¶ −0.4 −0.2 0 0.2 0.4 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 ε bias( ε) (a) −0.4 −0.2 0 0.2 0.4 10−4 ε MSE( ε) (b)

Ç 2.9: (a) Bias and (b) MSE of ˆ versus  , Uà¯ìý0§c$, Uà [1]íj¶

5 10 15 20 25 −1.5 −1 −0.5 0 0.5 1 1.5x 10 −3 SNR bias(fe) (a) 5 10 15 20 25 10−6 10−5 10−4 10−3 SNR MSE(fe)

Ç 2.10: (a) Bias and (b) MSE of ˆfe versus SNR , Uà×ä í¯ìý0§c$˙šÂ, fe = 0.3 ,

(22)

 2 ı À-šÍ$í,¿j¶ −0.2 −0.1 0 0.1 0.2 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 fe bias(fe) (a) −0.2 −0.1 0 0.1 0.2 10−5 10−4 MSE(fe) (b)

Ç 2.11: (a) Bias and (b) MSE of ˆfe versus fe , Uà×ä í¯ìý0§c$˙šÂ, SNR = 16dB

5 10 15 20 25 −5 −4 −3 −2 −1 0 1 2 3 4 5x 10 −3 bias( ε) SNR (a) 5 10 15 20 25 0 1 2 3 4 5 6 7 8 9x 10 −5 SNR MSE( ε) (b)

Ç 2.12: (a) Bias and (b) MSE of ˆ versus SNR , Uà×ä í¯ìý0§c$˙šÂ, fe = 0.3 ,

(23)

 2 ı À-šÍ$í,¿j¶ −0.4 −0.2 0 0.2 0.4 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 ε bias( ε) (a) −0.4 −0.2 0 0.2 0.4 10−6 10−5 ε MSE( ε) (b)

Ç 2.13: (a) Bias and (b) MSE of ˆ versus  , Uà×ä í¯ìý0§c$˙šÂ, SNR = 16dB

5 10 15 20 25 0 1 2 3 4 5 6x 10 −3 SNR bias( ε) (a) 5 10 15 20 25 10−6 10−5 10−4 SNR MSE( ε) (b)

Ç 2.14: (a) Bias and (b) MSE of ˆ versus SNR , Uà×ä í¯ìý0§c$˙šÂ, Uà [1]íj ¶, fe = 0.3 ,  = 0.3

(24)

 2 ı À-šÍ$í,¿j¶ −0.4 −0.2 0 0.2 0.4 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 ε bias( ε) (a) −0.4 −0.2 0 0.2 0.4 10−6 10−5 10−4 ε MSE( ε) (b)

Ç 2.15: (a) Bias and (b) MSE of ˆ versus  , Uà×ä í¯ìý0§c$˙šÂ, Uà [1]íj¶, SNR = 16dB

(25)

 3 ı

£>ä0Ö½fÍ$í,¿j¶

3.1



¡V, £>ä0ä0Ö½fÍ$ÚÚ§ƒ½e, 6˜í@àÊrÖ@à,, dubPÚe bPà E«c˜ (DSL) £ø< äíÌ(_0, £>ä0ä0Ö½fÍ$úkÖ½˜ (multipath) í à ßíJ}‰, Žâø’e}Ab_üíŸ-š (subcarrier) Vf£, U)©_Ÿ-šî§ƒä0«Á (flat fading) 7.uä0²Ï«Á (frequency selective fading), ओ7“Âíql ª<íu£ >ä0ä0Ö½fÍ$ú°¥íÏÏœøOÀ-šÍ$Ü>rÖ, FJä0R£vÈÏÏí,¿Zó$ ½b …ı‚àYƒmUóÉ£w¿ÖíU‚ÓG (cyclostationary) Ô4VªWÔñí,¿ (blind estimation), 3b-ZuÓ H.Bolcskei[2]íj¶, .¬ÄÑ[2]2íRûrÖ˜Ï, ._àkÝcbí vÈR, FJBb½hRû|ø_£üí_1TXø_híƶVªW,¿, 1‚àÚ7_ÒVð„ !‹

3.2

Í$_

úk¨Ö0§c$ (pulse shaping) í£>ä0ä0Ö½fÍ$, ^!ä (baseband) mUª[ ýÑ x[n] = N −1 X k=0 ∞ X l=−∞ ck,lg[n − lM ]ej(2π/N )k(n−lM ) (3.1)

w2 N ÑŸ-š (subcarriers) íb¾, M u¯UíÅ, g[n] [ýf« pulse sharping ˙šÂ, ck,l

[ý’e¯U ç M > N vZH[¥_Í$¨Ö7=ô. (cyclic extension)

ÊQY«YƒímU}„øívÈRDä0R, ĤBbªJzQYƒímU[ýÑ r[n] = ej(2πθen+φ)

Z 0.5

0.5

(26)

 3 ı £>ä0Ö½fÍ$í,¿j¶ w2 X(ej2πν) Ñ x[n] í×àvÈZ sž² (DTFT), n

e ∈ R ÑvÈR, θe ∈ [−1/2, 1/2)

[ý-šä0R, φ u–áíi, 7 ρ[n] u2 ì (wide-sense stationary) Æm˙å, /D’e¯U ck,l

óÖ , b·<ƒ, ne 1³ÌìÑcb, ç ne ∈ Z , † (3.2) ªJ“

r[n] = ej(2πθen+φ)x[n − n

e] + ρ[n] (3.3)

Æm˙åíóÉ4ƒbÑ cρ[τ ] = E {ρ[n]ρ∗[n − τ ]} , ¯U cp,l u*̯UÍ$ (finite-alphabet) µ

brèÇ (constellation) 2צ, Å— E{ck,lc∗k0,l0} = σ2cδ[k − k

0

]δ[l − l0

]  Q-VBbcq©_Ÿ-š (subcarrier) uJ.°í?¾Êf], C6zBbUàŸ-š‹ž (subcarrier weighting), #싞ƒ b w[k] Ĥf£ímUZŸÑ x[n] = N −1 X k=0 ∞ X l=−∞ ck,lw[k]g[n − lM ]ej(2π/N )k(n−lM ) (3.4)

3.3

U‚ÓGÔ4

à°5‡FTƒ, U‚ÓG (cyclostationarity) uÔñí°¥j¶íÉœ, lì2Ýv0óÉ (cor-relation) ƒbÑ cr[n, τ ] = E{r[n]r∗[n − τ ]}, τ uø_cbíôb¡b, ¡ÎË“íRû, ‹ž OFDM

mU (3.4) íóÉÑ cr[n, τ ] = σ2 cej2πθeτ M N −1 X m=0 |w[m]|2 (M −1 X s=0 Z 0.5−Ms −0.5 ej2πsM (n−ne)ej2πντG ej2π(ν+ s M− m N) G∗ ej2π(ν− m N) dν + −1 X s=−M +1 Z 0.5 −0.5−s M ej2πsM (n−ne)ej2πντG ej2π(ν+ s M− m N) G∗ ej2π(ν− m N) dν ) + cρ[τ ] (3.5) w2 G(ej2πθ) = P∞ n=−∞g[n]e −j2πnθ , hôªõ| cr[n, τ ] ú n uJU‚ M ʉ“, ²Æuz cr[n, τ ] = cr[n + M, τ ], Ĥx= ì4íÔ4 QOl…íZ sb[b, ;Wì2: Cr[k, τ ] = 1 M M −1 X n=0 cr[n, τ ]e −j(2π/M )kn , k = 0, 1, · · · , M − 1. (3.6) ¡ÎË“í}pª), ç 0 ≤ k ≤ M − 1 Cr[k, τ ] = σ2 c Me j2πθeτej2πk M ne N −1 X m=0 |w[m]|2 ( Z 0.5−k/M −0.5 ej2πντGej2π(ν+Mk−m N)  G∗ ej2π(ν−mN) dν + ej2πne Z 0.5 0.5−k/M ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν  + cρ[τ ]δ[k] (3.7)

(27)

 3 ı £>ä0Ö½fÍ$í,¿j¶ Í(Bbø (3.7) 2í }ÇV, 1/šdcÜ(ª) Cr[k, τ ] = σ2 c Me j2πθeτej2πk M ne  ΓN[τ ]A(g, g)  τ, k M   1 + k M(e j2πne− 1)  +(ej2πne − 1) ∞ X γ=−∞ γ6=τ ΓN[γ]A(g, g)  γ, k M  (−1)τ −γ j2π(τ − γ)  1 − e−j2π(τ −γ)k M  + cρ[τ ]δ[k] (3.8) w2 ΓN[τ ] :=PN −1k=0 |w[k]|2ej(2π/N )kτ , 7 A(g, h)[k, θ) := P∞ n=−∞g[n]h[n − k]e −j2πnθ 

3.4

,¿j¶

‚à Cr[k, τ ] ªJ,¿|ä0RDvÈR, ílì2ø_.Œí¡b Φ[k, τ ] = k M + P∞ γ=−∞ γ6=τ ΓN[γ]A (g, g)γ, k M  (−1)τ −γ j2π(τ −γ)  1 − e−j2π(τ −γ)k M  ΓN[τ ]A(g, g)τ,Mk  (3.9) ¥_¡bíMuªJ9ll|Ví, Éb‘²í τ £ k Å— ΓN[τ ]A(g, g)τ,Mk 6= 0, ÄÑ ΓN[τ ]  A(g, g)τ, k M ª‚à˛øí w[k] D g[n] °), ‚à (3.8) ª) Cr[k, τ ] = σ2 c Me j2πθeτe−j2πk M neΓN[τ ]A(g, g)  τ, k M  1 + (ej2πne − 1)Φ[k, τ ] + c ρ[τ ]δ[k] (3.10)

Q-Vyì2 C[k, τ ] , uøŸ…í Cr[k, τ ] £d“ (normalize) FßÞ,

à-C[k, τ ] = σ2 Cr[k, τ ] c MΓN[τ ]A(g, g)τ, k M  = ej2πθeτej2πk M ne 1 + (ej2πne − 1)Φ[k, τ ] + cρ[τ ]δ[k] σ2 c MΓN[τ ]A(g, g)τ, k M  (3.11) Q-VÇá,¿: 1. ,¿ ne : lz θe í à ¥, FJ‘² τ = 0 , † C[k, 0] = e−j 2πk M ne(1 + (ej2πne − 1)Φ[k, 0]) ÉÖ ne ø_¡bu„øí, Q-V5? C[k, 0] D C[M − k, 0] í , ª) C[k, 0]C[M − k, 0] = e−j2πne (1 + (ej2πne− 1)Φ[k, 0])(1 + (ej2πne − 1)Φ[M − k, 0]) = ej2πneΦ[k, 0]Φ[M − k, 0] + (Φ[k, 0] + Φ[M − k, 0] − 2Φ[k, 0]Φ[M − k]) +e−j2πne (1 + Φ[k, 0]Φ[M − k, 0] − Φ[k, 0] − Φ[M − k, 0]) (3.12)

(28)

 3 ı £>ä0Ö½fÍ$í,¿j¶ Ix = ej2πneHp (3.12) ª)ø_ùŸ Ax2 + Bx + C = 0 , w2 A = Φ[k, 0]Φ[M − k, 0] (3.13) B = Φ[k, 0] + Φ[M − k, 0] − 2Φ[k, 0]Φ[M − k, 0] − C[k, 0]C[M − k, 0]) (3.14) C = 1 + Φ[k, 0]Φ[M − k, 0] − Φ[k, 0] − Φ[M − k, 0] (3.15) ¤ùŸí}s_j, w2íø_Ñ x í,lM, .¬b}z¥_M,¿|í neH x nªø −¨_Mnu£üí, ne í,lj¶à-ˆ ne= − M 2πk]  C[k, 0] 1 + (x − 1)Φ[k, 0]  (3.16) 2. ,¿ θe : ˆ θe= 1 2πτ] C[k, τ ] e−j2πk M nˆe(1 + (ej2π ˆne− 1)Φ[k, τ ]) ! (3.17)

3.5

D H.Bolcskei

FT|íj¶ªœ

è5‡Fû|í, C[k, τ ] = ej2πθeτe−j2πk M ne 1 + (ej2πne− 1)Φ[k, 0] (3.18) ªD H.Bolcskei Rûí!‹dªœ, -ÑwRû!‹ C[k, τ ] = ej2πθeτej2πk M ne (3.19) ªœ(ªõ|‡ú ne ∈ Z í8”, ej2πne = 1 ,(3.18) D (3.19) }‰ó, FJ¥v H.Bolcskei T|í _}u£üí ¢FT|í,¿j¶à-: ˆ θe = 1 4πτ]{C[k, τ ]C[M − k, τ ]} (3.20) ˆ ne = − M 2πk]{C[k, τ ]e −j2π ˆθeτ} (3.21)

(29)

 3 ı £>ä0Ö½fÍ$í,¿j¶

3.6

ÔyW

çøÇáUàí g[n] D w[k] u/Ôyív, BbªJ“, à¤6ªJ“,¿íj¶, l «n³‹Ÿ-š‹ží8$, ²Æuz, w[k] = 1 úFí k , à¤øV ΓN[τ ] = NP ∞ s=−∞δ[τ − sN ] , ½hZŸ (3.8), /‘² τ = N Vl Cr[k, N ] = N σ2 c M e j2πθeNej2πk M ne  A(g, g)  N, k M   1 + k M(e j2πne − 1)  +(ej2πne − 1) ∞ X s=−∞ s6=1 A(g, g)  sN, k M  (−1)N −sN j2π(N − sN )  1 − e−j2π(N −sN )k M  (3.22) Í(¦ k = M − k Cr[M − k, N ] = N σ2c M e j2πθeNej2π(M −k) M ne  A(g, g)  N,M − k M   1 + M − k M (e j2πne − 1)  +(ej2πne − 1) ∞ X s=−∞ s6=1 A(g, g)  sN,M − k M  (−1)N −sN j2π(N − sN )  1 − e−j2π(τ −sN )M −k M  = N σ 2 c M e j2πθeNej2πkM ne  A∗(g, g)  N, k M   1 + k M(e −j2πne − 1)  +(e−j2πne − 1) ∞ X s=−∞ s6=1 A∗(g, g)  sN, k M   − (−1) N −sN j2π(N − sN )   1 − ej2π(τ −sN )Mk  = C∗ r[k, N ]ej4πθeN (3.23) ‚à (3.23) ªJòQ,¿ θe , .àd5‡íj¶blø,|Ví ne HpV° θe , FJªJTòÄü, j¶à-ˆ θe= 1 4πN]Cr[k, N ]Cr[M − k, N ] (3.24)

3.7

,=óÉ

è cr[n; τ ] = E{r[n]r∗[n − τ ]} , .¬BbÉ?àÌí¦šÌ (sample mean) V¡N, cqBb

L ª’e ˆ cr[n; τ ] = M L L/M −1 X l=0 r[n + lM ]r∗ [n − τ + lM ] , n = 0, 1, · · · M − 1 (3.25)

(30)

 3 ı £>ä0Ö½fÍ$í,¿j¶ † ˆ Cr[k; τ ] = 1 M M −1 X n=0 ˆ cr[n; τ ]e −j2πkn M (3.26) C6òQl ˆ Cr[k; τ ] = 1 L L−1 X n=0 r[n]r∗ [n − τ ]e−j2π Mkn (3.27) é7qc, à‹L.D×, µZ}×íÏÏßÞ

3.8

_Ò!‹

_Ò¯ìý0§c$˙šÂ‹Ÿ-š‹ž‹=ô.íÕ”, ²ÏŸ-šb N = 8, ¯UÅ M = 16 , g[n] Ñ α = 0.5 í¯ìýƒbàÇ (3.1), Õ‹Ÿ-š‹žÑ w = [1.1 2.0 1.4 1.33 1.0 0.6 0.8 1.2]  }Uà,HFTíj¶£ H.Bolcskei[2]íj¶%â 400 ŸÖ ¿t!‹í$l’ed}&, ¢¿tàí ¦−ÑË‹ëÆm (AWGN) ¦−DÖ½˜ (multipath) ¦− 0 10 20 30 40 50 60 70 80 90 −0.2 0 0.2 0.4 0.6 0.8 1

1.2 Pulse shaping filter g[n]

n

g[n]

(31)

 3 ı £>ä0Ö½fÍ$í,¿j¶ 1. Ë‹ëÆm (AWGN) ¦−Uà (3.16)(3.17) ,¿, ‚à 512 _¯U, / ne ∈ R :

(qì ne= 3.3 , θe = 0.1 , Ç3.2 [ývÈR ne í,¿, Ç3.3[ýä0R θe í,¿) 0 10 20 30 −0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 (a) SNR bias(ne) 0 10 20 30 10−3 10−2 10−1 (b) SNR MSE(ne)

Ç 3.2: (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U ne= 3.3 , θe = 0.1

0 10 20 30 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 (a) SNR bias(fe) 0 10 20 30 10−4 10−3 (b) SNR MSE(fe)

(32)

 3 ı £>ä0Ö½fÍ$í,¿j¶ 2. Ë‹ëÆm¦−Uà H.Bolcskei[2],¿, ‚à 512 _¯U, / ne∈ R :

(qì ne= 3.3 , θe = 0.1 , Ç3.4 [ývÈR ne í,¿, Ç3.5[ýä0R θe í,¿) 0 10 20 30 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 (a) SNR bias(ne) 0 10 20 30 10−2 10−1 100 (b) SNR MSE(ne)

Ç 3.4: (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2], ne = 3.3 ,

θe = 0.1 0 10 20 30 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 (a) SNR bias(fe) 0 10 20 30 10−3 (b) SNR MSE(fe)

Ç 3.5: (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2] ne = 3.3 ,

(33)

 3 ı £>ä0Ö½fÍ$í,¿j¶ 3. Ë‹ëÆm¦−Uà (3.16)(3.17) ,¿, ‚à 512 _¯U, / ne ∈ Z : (qì ne= 5 , θe = −0.2 , Ç3.6 [ývÈR ne í,¿, Ç3.7[ýä0R θe í,¿) 0 10 20 30 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 (a) SNR bias(ne) 0 10 20 30 10−3 10−2 10−1 (b) SNR MSE(ne)

Ç 3.6: (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U, ne = 5 , θe = −0.2

0 10 20 30 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 (a) SNR bias(fe) 0 10 20 30 10−4 10−3 (b) SNR MSE(fe)

(34)

 3 ı £>ä0Ö½fÍ$í,¿j¶ 4. Ë‹ëÆm¦−Uà H.Bolcskei[2],¿, ‚à 512 _¯U, / ne∈ Z :

(qì ne= 5 , θe = −0.2 , Ç3.8 [ývÈR ne í,¿, Ç3.9[ýä0R θe í,¿) 0 10 20 30 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 (a) SNR bias(ne) 0 10 20 30 10−2 10−1 (b) SNR MSE(ne)

Ç 3.8: (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2], ne = 5 ,

θe = −0.2 0 10 20 30 −0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01 (a) SNR bias(fe) 0 10 20 30 10−5 10−4 10−3 (b) SNR MSE(fe)

Ç 3.9: (a) Bias and (b) MSE of ˆfe versus SNR , Uà¯ìý0§c$,512 ¯U, Uà [2], ne = 5 ,

(35)

 3 ı £>ä0Ö½fÍ$í,¿j¶ 5. Ë‹ëÆm¦−Uà (3.16)(3.17) ,¿, ‚à 128 _¯U: (qì ne= 3.3 , θe = 0.3 , Ç3.10 [ývÈR ne í,¿, Ç3.11[ýä0R θe í,¿) 0 10 20 30 −0.2 −0.18 −0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 SNR bias(ne) (a) 0 10 20 30 10−2 10−1 100 SNR MSE(ne) (b)

Ç 3.10: (a) Bias and (b) MSE of ˆne versus SNR , Uà¯ìý0§c$,128¯U, ne= 3.3 , θe = 0.3

0 10 20 30 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 SNR bias(fe) (a) 0 10 20 30 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 10 −3 SNR MSE(fe) (b)

(36)

 3 ı £>ä0Ö½fÍ$í,¿j¶ 6. Ö½˜¦− (multipath) Uà (3.16)(3.17) ,¿, ‚à 512 _¯U:

(qì ne= 3.3 , θe = 0.3 , Ç3.12 [ývÈR ne í,¿, Ç3.13[ýä0R θe í,¿) Uàíuû¼íÖ½˜ Rayleigh-fading ¦−, w2 σ2 h = [ 0.9502 0.0473 0.0024 0.0001 ] 0 10 20 30 −0.2 −0.18 −0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 (a) SNR bias(ne) 0 10 20 30 10−2 10−1 100 (b) SNR MSE(ne)

Ç 3.12: (a) Bias and (b) MSE of ˆne versus SNR , Ö½˜¦−, Uà¯ìý0§c$,512 ¯U,

ne = 3.3 , θe = 0.3 0 10 20 30 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 (a) SNR bias(fe) 0 10 20 30 10−3 10−2 10−1 (b) SNR MSE(fe)

Ç 3.13: (a) Bias and (b) MSE of ˆfe versus SNR , Ö½˜¦−, Uà¯ìý0§c$,512 ¯U,

(37)

 4 ı

!

¥¹dí½õÊky£Í$í_1½hRûhíƶ‚àU‚ÓGíÔ4V,¿ä0RDv ÈR, ‡úÀ-šÍ$, ªŽO¬¦šV×)xU‚ÓGÔ4íóÉ, óœk OFDM Í$…™Z x¤Ô4 iõÑ.Ûƒ¦)f’eím7CuçÕío*¯UZªªW,¿, ÿõ†ulóúíµ Æ/Ûb×¾í’eV,$lÔ4 3bíÏÏuâkJ¦šÌV¡N‚MvF¨A, FJà‹;b TòÄü, ZÛbTòàVlí¦šõb, l¾Z}‹×, /6}ô(¦),lMívÈ, FJw2í ¦Ÿu'½bí úkÀ-šÍ$, …d2T|íj¶ªJ^£ç0§c˙šÂíä œ×ví,l!‹, 7ú£> ä0ä0Ö½fÍ$ªJ^£ÝcbívÈRví,l!‹, úkÖ½˜í Rayleigh «Á¦−6ª £üí,¿

(38)

 A ı

Ë“

ílRû cr[n, τ ] cr[n, τ ] = E{r[n]r ∗ [n − τ ]} = E  ej2πθeτ Z 0.5 −0.5 X(ej2πµ)ej2πµ(n−ne) Z 0.5 −0.5 X∗ (ej2πν)e−j2πν(n−τ −ne) dν  + cρ[τ ] = E ( ej2πθeτ Z 0.5 −0.5 N −1 X k=0 w[k]Gej2π(µ−Nk)  ∞ X l=−∞ ck,le −j2πµlM ej2πµ(n−ne) · Z 0.5 −0.5 N −1 X p=0 w∗ [p]G∗ ej2π(ν−Np)  ∞ X q=−∞ c∗ p,qej2πνqMe −j2πν(n−τ −ne) dν ) + cρ[τ ] = σc2ej2πθeτ N −1 X k=0 |w[k]|2 Z 0.5 −0.5 Z 0.5 −0.5 ej2π(µ−ν)(n−ne)ej2πντG  ej2π(µ−Nk)  G∗ ej2π(ν−Nk)  · ∞ X l=−∞ ej2πlM (ν−µ)dµdν + cρ[τ ] (A.1) lcì ν uø_b, ª)P∞ l=−∞ej2πlM (ν−µ) = 1 M P∞ s=−∞δ(µ − ν − s/M ) Ñ©/ (continuous) í δ ƒb, Hp (A.1) ª) cr[n, τ ] = σ2 cej2πθeτ M N −1 X m=0 |w[m]|2 (M −1 X s=0 Z 0.5−Ms −0.5 ej(2πsM )(n−ne)ej2πντG ej2π(ν+ s M− m N) G∗ ej2π(ν− m N) dν + −1 X s=−M +1 Z 0.5 −0.5−s M ej(2πsM )(n−ne)ej2πντG ej2π(ν+ s M− m N) G∗ ej2π(ν− m N dν ) + cρ[τ ] (A.2)

(39)

 A ı Ë“ Q-VRû Cr[k, τ ] , úk 0 ≤ k ≤ M − 1 , ª) Cr[k, τ ] = 1 M M −1 X n=0 σ2 cej2πθeτ M N −1 X m=0 |w[m]|2 (M −1 X s=0 Z 0.5−Ms −0.5 ej(2πsM )(n−ne)ej2πντG ej2π(ν+ s M− m N) · G∗ ej2π(ν−mN) dν + −1 X s=−M +1 Z 0.5 −0.5−s M ej(2πsM )(n−ne)ej2πντG ej2π(ν+ s M− m N) G∗ ej2π(ν− m N dν ) ·e−j2πk M n+ 1 M M −1 X n=0 cρ[τ ]e−j 2πk M n = M −1 X n=0 σ2 cej2πθeτ M2 N −1 X m=0 |w[m]|2 (M −1 X s=0 ej(2πsM )(n−ne)e−j 2πk M n Z 0.5−Ms −0.5 ej2πντG ej2π(ν+Ms− m N) · G∗ ej2π(ν−mN) dν +1 X s=−M +1 ej(2πsM )(n−ne)ej2πk M n Z 0.5 −0.5−s M ej2πντG ej2π(ν+Ms−m N) ·G∗ ej2π(ν−mN dν  + cρ[τ ]δ[k] = σ 2 cej2πθeτ M2 N −1 X m=0 |w[m]|2 (M −1 X s=0 M −1 X n=0 e−j2πn M (k−s)e−j(2πsM )ne Z 0.5−Ms −0.5 ej2πντG ej2π(ν+Ms − m N) · G∗ ej2π(ν−mN) dν + −1 X s=−M +1 M −1 X n=0 e−j2πn M (k−s)e−j( 2πs M )ne Z 0.5 −0.5−s M ej2πντG ej2π(ν+Ms− m N) ·G∗ ej2π(ν−mN dν  + cρ[τ ]δ[k] (A.3) w2PM −1 n=0 e −j2πn M (k−s)= M δ[k − s + lM ] Ñ×à (discrete) í δ ƒb, Hp (A.3), ll 1 ≤ k ≤ M − 1 í8$, ) Cr[k, τ ] = σ2 cej2πθeτ M N −1 X m=0 |w[m]|2 ( e−j(2πk M )ne Z 0.5−Mk −0.5 ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν +e−j(2π M)(k−M )ne Z 0.5 −0.5−k−M M ej2πντGej2π(ν+k−MM −m N)  G∗ ej2π(ν−mN dν  = σ 2 cej2πθeτ M N −1 X m=0 |w[m]|2e−j(2πk M )ne ( Z 0.5−Mk −0.5 ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν +ej2πne Z 0.5 0.5−k M ej2πντGej2π(ν+Mk−m N)  G∗ ej2π(ν−mN dν  (A.4) ÇÕl Cr[0, τ ] = σ2 cej2πθeτ M N −1 X m=0 |w[m]|2 Z 0.5 −0.5 ej2πντG ej2π(ν−mN) G∗ ej2π(ν− m N) dν + c ρ[τ ] (A.5)

(40)

 A ı Ë“ ¯9 (A.4) D (A.5) ª), úk k = 0, 1, · · · , M − 1 Cr[k, τ ] = σ2 c Me j2πθeτej2πk M ne N −1 X m=0 |w[m]|2 ( Z 0.5−k/M −0.5 ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν + ej2πne Z 0.5 0.5−k/M ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν  + cρ[τ ]δ[k] (A.6) Q-Vl (A.6) 2í }¶} Z 0.5−k/M −0.5 ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν = Z 0.5−k/M −0.5 ej2πντ ∞ X α=−∞ g[α]e−j2π(ν+k M− m N)α ! ∞ X β=−∞ g[β]ej2π(ν−mN)β ! dν = ∞ X α=−∞ ∞ X β=−∞ g[α]g[β]ej2πmN (α−β)e−j 2πk M α Z 0.5−k/M −0.5 ej2π(β−α+τ )νdν = ∞ X α=−∞ ∞ X γ=−∞ g[α]g[α − γ]ej2πmN γe−j 2πk M α Z 0.5−k/M −0.5 ej2π(τ −γ)νdν = ∞ X α=−∞ g[α]g[α − τ ]ej2πmN τe−j 2πk M α(1 + k M) + ∞ X α=−∞ ∞ X γ=−∞ γ6=τ g[α]g[α − γ]ej2πmN γe−j 2πk M α (−1) τ −γ 2π(τ − γ)  ej2πkM (τ −γ)− 1  (A.7) °Üª„ Z 0.5 0.5−k/M ej2πντGej2π(ν+Mk− m N)  G∗ ej2π(ν−mN) dν = ∞ X α=−∞ g[α]g[α − τ ]ej2πmN τe−j 2πk M α k M + ∞ X α=−∞ ∞ X γ=−∞ γ6=τ g[α]g[α − γ]ej2πmN γe−j 2πk M α (−1) τ −γ 2π(τ − γ)  1 − ej2πkM (τ −γ)  (A.8) ø (A.7) D (A.8) Hp (A.6) ª)ƒ|(!‹

Cr[k, τ ] = σ2 c Me j2πθeτe−j2πk M ne  ΓN[τ ]A(g, g)  τ, k M   1 + k M(e j2πne− 1)  +(ej2πne − 1) ∞ X γ=−∞ γ6=τ ΓN[γ]A(g, g)  γ, k M  (−1)τ −γ j2π(τ − γ)  1 − e−j2π(τ −γ)k M  + cρ[τ ]δ[k] (A.9) w2 ΓN[τ ] :=PN −1k=0 |w[k]|2ej(2π/N )kτ , 7 A(g, h)[k, θ) :=P ∞ n=−∞g[n]h[n − k]e −j2πnθ 

(41)

¡5d.

[1] F. Gini and G.B. Giannakis, “Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach,” IEEE Trans. Commun., Vol. 46, pp. 400 - 411, Mar 1998.

[2] H. Bolcskei, “Blind estimation of symbol timing and carrier frequency offset in wireless OFDM systems,” IEEE Trans. Commun., Vol. 49, pp. 988-999, June 2001.

[3] B. Park, H. Cheon, and E. Ko, “A blind OFDM synchronization algorithm based on cyclic correlation ,” IEEE Signal Processing Letters, Vol. 11, pp. 83-85, Feb. 2004.

[4] Y.Ma and Y. Huang, “Blind estimation of carrier frequency offset for OFDM in unknown multipath channels,” IEE Electronics Letters, Vol. 39, NO. 1, pp. 128-130 Jan. 2003. [5] Y.H. Kim, I. Song, S. Yoon,and S.R. Park, “An efficient frequency offset estimator for OFDM

systems and its performance characteristics,” IEEE Trans. Vehicular Technology, Vol. 50, pp. 1307-1312, Sept. 2001.

[6] J. Li, G. Liu, and G.B. Giannakis, “Carrier frequency offset estimation for OFDM-based WLANs,” IEEE Signal Processing Letters, Vol. 8, pp. 80-82, Mar 2001.

[7] S. Chang and E.J. Powers, “Efficient frequency-offset estimation in OFDM-based WLAN systems,” IEE Electronics Letters, Vol. 39, pp. 1554-1555, Oct. 2003.

[8] M. Morelli, A.N. D’Andrea, and U. Mengali, “Feedback frequency synchronization for OFDM applications,” IEEE Communications Letters, Vol. 5, pp. 28-30, Jan. 2001.

(42)

5d. [9] Z. Zhang, M. Zhao, H. Zhou, Y. Liu, and J. Gao, “Frequency offset estimation with fast acquisition in OFDM system,” IEEE Communications Letters, Vol. 8, pp. 171-173, Mar 2004.

[10] J.J. van de Beek, M. Sandell, and P.O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. on Signal Processing, Vol. 45, No. 7, pp. 1800-1805,Jul. 1997.

參考文獻

相關文件

• 我們通常用 nD/mD 來表示一個狀態 O(N^n) ,轉移 O(N^m) 的 dp 演算法. • 在做每題

• 在線 (online):程式/演算法 必須對前一個詢問或操作做出

• 在線 (online):程式/演算法 必須對前一個詢問或操作做出

An OFDM signal offers an advantage in a channel that has a frequency selective fading response.. As we can see, when we lay an OFDM signal spectrum against the

For MIMO-OFDM systems, the objective of the existing power control strategies is maximization of the signal to interference and noise ratio (SINR) or minimization of the bit

In this thesis, we have proposed a new and simple feedforward sampling time offset (STO) estimation scheme for an OFDM-based IEEE 802.11a WLAN that uses an interpolator to recover

Soille, “Watershed in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

傳統的 RF front-end 常定義在高頻無線通訊的接收端電路,例如類比 式 AM/FM 通訊、微波通訊等。射頻(Radio frequency,