• 沒有找到結果。

非線性擾動下二維有界域半線性波方式爆炸解之穩定性研究 (II)

N/A
N/A
Protected

Academic year: 2021

Share "非線性擾動下二維有界域半線性波方式爆炸解之穩定性研究 (II)"

Copied!
16
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 成果報告

非線性擾動下二維有界域半線性波方式爆炸解之穩定性研

究 (II)

研究成果報告(精簡版)

計 畫 類 別 : 個別型

計 畫 編 號 : NSC 98-2115-M-004-004-

執 行 期 間 : 98 年 08 月 01 日至 99 年 07 月 31 日

執 行 單 位 : 國立政治大學應用數學學系

計 畫 主 持 人 : 李明融

共 同 主 持 人 : 謝宗翰、白仁德

報 告 附 件 : 國外研究心得報告

處 理 方 式 : 本計畫涉及專利或其他智慧財產權,2 年後可公開查詢

中 華 民 國 99 年 09 月 11 日

(2)

Stability of positive solutions for some semilinear wave

equations under nonlinear perturbation near blow-up

solutions in 2-space dimension

u

u

p+

u

q =

0

II

Meng-Rong Li

Department of Mathematical Sciences National Chengchi University

AbstractIn this research we treat the stability of positive solutions of some par-ticular semilinear wave equations under nonlinear perturbation in bounded domain near blow-up solutions in 2-space dimension.

1.

Introduction

Consider the initial value problem for the semilinear wave equation of the type u + g (u) = 0 in [0; T ) R2;

(0.1)

u (0; ) = u0; _u (0; ) = u1;

(0.2)

where g : R ! Ris a real valued function, the initial data are given su¢ ciently smooth functions and u := utt 4u; 4 is the Laplace operator. The linear

case g(u) = mu, where m is a constant, corresponds to the classical Klein Gordon equation in relativistic particle physics; the constant m is interpreted as the mass and is assumed to be nonnegative generally. To model also nonlinear phenomena like quantization, in the 1950s equations of (0:1) type with nonlinearities like g(u) = mu + u3; m 0; were proposed as models in relativistic quantum mechanics with

local interaction. Solutions could be considered as real or complex valued functions. In the latter case it was assumed that the nonlinearity commutes with the phase; that is, g ei'u = "ei'g (u) for ' 2 R and that g(0) = 0. In this case, g may be expressed g(u) = uf juj2 , which gives the study of equation (0:1) [J ]. In the

(3)

2

noncoercive case it is easy to construct solutions of (0:1) with smooth initial data that blow up in …nite time; for instance, for any > 0 the function u(t; x) = (1 t) 1=m solves the equation u + (1 + )u juj2m

= 0; m 2 N and blows up at t = 1. Modifying the initial data o¤ fx : jxj 2g, say, we even posses a singular solution with C1-data having compact support.

In this study we want to deal with the stability of positive solutions for the semilinear wave equation

(1:1) u = up+ uq in [0; T ) ; R2

with boundary value null and initial values u (0; ) = u0( ) 2 H2( ) \ H01( ) and

_u (0; ) = u1( ) 2 H01( ) ; where p; q 2 (1; 1) and is a bounded domain in R2:

We will use the following notations: := @ @t; Du := ( _u; ru) ; ru := @2u @2x+ @2u @2y; a (t) := Z u2(t; x) dx; E (t) := Z jDuj2 p + 12 up+1 2 q + 1u q+1 (t; x) dx:

For a Banach space X and 0 < T 1 we set

Ck(0; T; X) = Space of Ck functions : [0; T ) ! X; H1 := C1 0; T; H1

0( ) \ C2 0; T; L2( ) :

The existence result to the equation (1:1) is proved [Li 3] and the positive solu-tion blows-up in …nite time if 0 [Li 2] ; this means that the positive solutions for the semilinear wave equation

u = up in [0; T ) ; (1:2)

u (0; ) = u0( ) 2 H2( ) \ H01( ) ;

_u (0; ) = u1( ) 2 H01( ) ;

is stable under nonlinear perturbation uq providing p > 1; q > 1; > 0; but it is

not clearly whether it is also true for any p > 1; q > 1; < 0 ? If so, we would want to estimate the blow-up time and the blow-up rate under such a situation.

It is also important to study the asymptotic behavior of the solution u ; the velocity and the rate of the approximation for approaches to zero.

Such questions are also not easy to answer even under the case for the ordinary di¤erential equation

u00= up(c + u0(t)q) ; (1.3)

u (0) = u0; u0(0) = u1;

p > 1; q > 1; c > 0; > 0:

We have studied the blow-up behavior of the solution for problem (1:3) and got some estimates on blow-up time and blow-up rate [Li4] but it is di¢ cult to …nd the

(4)

3

real blow-up time (life-span). Further literature could be fund in [S], [R], [W1] and [W2].

In this study we hope that our ideals used in [Li 4], [Li 5] can do help us dealing such problem (1:1) on our topics.

2. De…nition and Fundamental Lemma

There are many de…nitions of the weak solutions of the initial-boundary problems of the wave equation, we use here as following.

De…nition 2.1: For p > 1; u 2 H1 is called a positive weakly solution of equation (1:1), if Z t 0 Z ( _u (r; x) _' (r; x) + (up+ uq) (r; x) ' (r; x)) dxdr = Z t 0 Z ru (r; x) r' (r; x) dxdr 8' 2 H1 and Z t 0 Z u (r; x) (r; x) dxdr 0 for each positive 2 C1

0 ([0; T ) ).

Remark 2.2:

1) The de…nition 1.1 is resulted from the multiplying with ' to the equation (1:1) and integrating in from 0 to t.

2) From the local Lipschitz functions up+ uq; p > 1; q > 1 the initial-boundary

value problem (1:1) possesses a unique solution in H1 [Li1]. Hereafter we use the notations: 1 C := 1= sup kuk2= @u @x 2: u 2 H 1 0( ) ; q = sup kukq= @u @x 2: u 2 H 1 0( ) \ Lq( ) ; q > 1:

In this study we need the following lemmas

Lemma 2.3:

Suppose that u 2 H1 is a weakly positive solution of (1:1) with

E (0) = 0 for p > 1; q > 1; then for a (0) > 0 we have: (i) a 2 C2(R+) and E (t) = E (0) 8t 2 [0; T ). (ii) a0(t) > 0 8t 2 [0; T ), provided a0(0) > 0.

(iii) a0(t) > 0 8t 2 (0; T ), if a0(0) = 0.

(iv) For a0(0) < 0; there exists a constant t0> 0 with

(5)

4

and a0(t) = 0:

Lemma 2.4

:

Suppose that u is a positive weakly solution in H1 of equation (1:1) with u (0; ) = 0 = _u (0; ) in L2( ). For p > 1; q > 1; > 0; we have u 0

in H1.

According to Lemma 2.4, we discuss the following theme (3) E (0) = 0; a (0) > 0 and a0(0) 0 or a0(0) < 0.

(4) E (0) < 0; a (0) > 0 and a0(0) 0 or a0(0) < 0.

3. Estimates for the Life-Span

3.1. Estimates for the Life-Span of the Solutions of (1.1) under Null-Energy. We study the case that E (0) = 0, p > 1; q > 1; > 0 and divide it into two parts

(i) a (0) > 0; a0(0) 0

and

(ii) a (0) > 0; a0(0) < 0:

Remark 3.. 1) The local existence and uniqueness of solutions of equation (1:1) in H1 are known [Li 2].

2) For = 0, p > 1 and E (0) = 0; the life-span of the positive solution u 2 H1 of equation (1.1) is bounded by T 1:= k21sin 1 k2 k1a p 1 4 (0) ! with k1:= p 1 4 a p 1 4 (0) q a0(0) a 2(0) + 4C2; k 2:= p 1 2 C ; 1

C := 1= sup kuk2= kDuk2: u 2 H

1 0( ) :

3.2. Estimates for the Life-Span of the Solutions of equation (1.1) under Negativ-Energy. We use the following result and those argumentations of proof are not true for positive energy, so under positive energy we need another method to show the similar results.

Lemma 3

: Suppose that u 2 H1 is a positive weakly solution of equation (1.1)

with a (0) > 0 and E (0) < 0 for = 0. Then (i) for a0(0) 0, we have a0(t) > 0 8t > 0:

(ii) for a0(0) < 0; there exists a constant t

5> 0 with

(6)

5

and

t5 t6:=

a0(0)

(p 1) ( 2 E (0));

where is the positive root of the equation 2

p + 1

p+1

p+1 rp+1 r2+ E (0) = 0:

4. Stability of positive solutions of equation (1.1) near blow-up solutions under Negativ-Energy

In this study we use our ideals used in [Li 2]; [Li 4]; [Li 5] and [Li 7]to deal such problem (1:1) on our topics under negative energy and obtain the following results:

Theorem 4.1:

Suppose that u 2 H1 is a weakly positive solution of (1:1) with

E (0) 0 for p > 1; q > 1; then for a (0) > 0 we have:

The equation (1:1) is stable for ! 0+; this means that weakly positive solution u of (SL) blows up in …nite time for ! 0+:

Theorem 4.2:

Suppose that u 2 H1 is a weakly positive solution of (1:1) with

E (0) 0 for p > 1; q > 1; then for a (0) > 0 we have:

The equation (1:1) is stable for p > q; ! 0 ; this means that weakly positive solution u of (1:1) blows up in …nite time for p > q; ! 0 :

Theorem 4.3:

Suppose that u 2 H1 is a weakly positive solution of (1:1) with

E (0) 0 for p > 1; q > 1; then for a (0) > 0 we have:

The equation (1:1) is unstable for p < q; ! 0 ; this means that some weakly positive solution u of (1:1) blow up in …nite time for p < q; ! 0 ; but also there were some global weakly positive solution u of (1:1) for p < q; ! 0 :

Remark:

The decade rate of the di¤erence of life-spans T of u and T of u; can not be estimated very well for ! 0; thus it will be a good topic on asymptotic behavior near the blow-up solutions.

Reference:

[J] Jörgens,K.: Das Anfangswertproblem im Gröen fur eine Klasse nichtlinearer Wellengleichungen. M. Z.77. pp.295-307 (1961)

[Li1] Meng-Rong Li: On the Semi-Linear Wave Equations (I) : Taiwanese Journal of Math. Vol. 2, No. 3, pp. 329-345, Sept. 1998

[Li2] Meng-Rong Li: Estimates for the Life-Span of the Solutions of some Semi-linear Wave Equations. Communications on Pure and Applied Analysis vol.7,no. 2, pp.417-432. (2008).

[Li3] Meng-Rong Li: Nichtlineare Wellengleichungen 2. Ordnung auf beschränk-ten Gebiebeschränk-ten. PhD-Dissertation Tübingen 1994.

(7)

6

[Li 4] Meng-Rong Li: Blow-up solutions to the nonlinear second order di¤erential equation u00 = up(c

1+ c2u0(t)q). Taiwanese Journal of Mathematics, vol.12,no.3,

pp.599-622, June 2008.

[Li5] Renjun Duan, Meng-Rong Li; Tong Yang: Propagation of Singularities in the Solutions to the Boltzmann Equation near Equilibrium, Mathematical Models and Methods in Applied Sciences (M3AS), vol.18, no.7, pp.1093-1114.(2008)

[Li6] Meng-Rong Li, Brain Pai: Quenching problem in some semilinear wave equations. Acta math. scientia vol.28,no.3, pp.523-529, July 2008.

[Li7] Meng-Rong Li: Estimates for the life-span of the solutions of some semilin-ear wave equation u up= 0 in one space dimension. Communications on Pure

and Applied Analysis, 2010 to appear.

[R] Racke R.: Lectures on nonlinear Evolution Equations: Initial value problems. Aspects of Math. Braunschweig Wiesbaden Vieweg(1992).

[S] Strauss W.A.: Nonlinear Wave Equations. A.M.S. Providence(1989). Di-mensions. J. Di¤erential Equations52.p.378-406(1984)

[W1] von Wahl W.: Klassische Lösungen nichtlinearer Wellengleichungen im Großen.M.Z.112.p.241-279(1969).

[W2] von Wahl W.: Klassische Lösungen nichtlinearer gedämpfter Wellengle-ichungen im Großen. Manuscripta.Math.3.p7-33(1970).

(8)

訪香港城市大學數學系

楊彤教授(講座教授 理工學院副院長)

報告

十月十五日討論 波茲曼方程在實際上應用於其它領域的可行性

1. 建立個體經濟新模型之可行性

2. 建立總體經濟新模型之可行性

3. 建立人口模型之可行性

4. 稀薄流新的思考方向 建立新模型之可行性

十月十六日討論 波茲曼方程中碰撞項於實際應用在其它領域時

進行實質分類的可行性

1. 經濟行為如個經 總經或上市公司間之交互持股 其效益

問題建模時 其碰撞項的分類明顯重要

2. 人口問題亦應可利用波茲曼方程的概念來建模 於建模時

其碰撞項的分類 亦格外重要

3. 若可建立稀薄流新模型時其碰撞項的分類 格外重要 尤其

在經費的支出上

十月十七日 因楊彤教授赴廣州大學參加學術研討會 所以無法共同

討論細節 相約于十一月份再進行細節上的討論 併討論楊彤

教授訪問政大應數系的可能性與時間

十月十八日 整理行裝準備返台

Report on visiting Chair Professor Tong Yang

(Professor of Institute of Technology Vice-President)

Department of Mathematics, City University of Hong Kong

October 15 Discussion about the feasibility of the applications of Boltzmann equations

practically, to other areas:

1. To establish the feasibility of a new model of Microeconomics

2. The establishment of the feasibility of a new model for Macroeconomics

3. To establish the feasibility of the population model

4. Possibilities to explore a new direction on Rarefied flow and the feasibility

establishing a new model

(9)

October 16 to discuss of the substantive classification of Boltzmann equations in the

collision term of the practical application in other research fields

1. Economic behavior, such as the listed company or by the interaction between the

holdings of its benefits

Problem modeling the classification of items of its obvious importance collisions

2. The population problem should be able to use the concept of Boltzmann equation to

model in the modeling

Its impact is particularly important to the classification of items

3. If it is able to establish the thin stream of new models of its impact is particularly

important, particularly the classification of items

The expenditure of funds,

October 17 by Professor Yang Tong went to the Guangzhou University Symposium on

it is not possible to participate in the common

Meet in November to discuss the details further discussion of the details and

discuss the Tong Yang

Visit the Department of National Chengchi University professor to be a few

possibilities and the time

(10)

訪香港城市大學數學系

楊彤教授(講座教授 理工學院副院長)

報告

十一月十九日討論 波茲曼方程在實際上應用於其它相關領域的可行性

1. 建立個體經濟之分子運動非線性模型之可行性

2.建立總體經濟之分子運動非線性模型之可行性

3.建立非線性人口模型之可行性

4.稀薄流新的思考方向 建立二次非線性模型之可行性

十一月二十日討論 波茲曼方程中碰撞項於實際應用在其它領域時

進行二次非線型逼近的可行性

1. 經濟行為之效益問題建模時 以二次非線型分子運動逼近明顯重要

2. 人口問題亦可以波茲曼方程概念建模 其碰撞項之二次非線型逼近亦格外

重要

3. 建立稀薄流時碰撞項二次非線性模型

十一月二十一日 相約于二 O 一 O 年六月楊彤教授訪問政大應數系

十一月二十二日 整理行裝準備返台

(11)
(12)

98 年度專題研究計畫研究成果彙整表

計畫主持人:

李明融

計畫編號:

98-2115-M-004-004-計畫名稱:

非線性擾動下二維有界域半線性波方式爆炸解之穩定性研究 (II)

量化

成果項目

實際已達成

數(被接受

或已發表)

預期總達成

數(含實際已

達成數)

本計畫實

際貢獻百

分比

單位

備 註

質 化 說

明:如 數 個 計 畫

共 同 成 果、成 果

列 為 該 期 刊 之

封 面 故 事 ...

期刊論文

1

1

100%

Parabolic method

in o.d.e , 2010

accepted

by

Taiwanese

J.

Mathematics)

研究報告/技術報告

0

0

100%

研討會論文

0

0

100%

論文著作

專書

0

0

100%

申請中件數

0

0

100%

專利

已獲得件數

0

0

100%

件數

0

0

100%

技術移轉

權利金

0

0

100%

千元

碩士生

0

0

100%

博士生

0

0

100%

博士後研究員

0

0

100%

國內

參與計畫人力

(本國籍)

專任助理

0

0

100%

人次

期刊論文

1

1

100%

submitted to a

sci journal

研究報告/技術報告

0

0

100%

研討會論文

0

0

100%

論文著作

專書

0

0

100%

章/本

申請中件數

0

0

100%

專利

已獲得件數

0

0

100%

件數

0

0

100%

技術移轉

權利金

0

0

100%

千元

碩士生

1

0

100%

博士生

0

0

100%

博士後研究員

0

0

100%

國外

參與計畫人力

(外國籍)

專任助理

1

0

100%

人次

(13)

其他成果

(

無法以量化表達之成

果如辦理學術活動、獲

得獎項、重要國際合

作、研究成果國際影響

力及其他協助產業技

術發展之具體效益事

項等,請以文字敘述填

列。)

成果項目

量化

名稱或內容性質簡述

測驗工具(含質性與量性)

0

課程/模組

0

電腦及網路系統或工具

0

教材

0

舉辦之活動/競賽

0

研討會/工作坊

0

電子報、網站

0

目 計畫成果推廣之參與(閱聽)人數

0

(14)
(15)

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)

、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標(請說明,以 100 字為限)

□實驗失敗

□因故實驗中斷

□其他原因

說明:

2. 研究成果在學術期刊發表或申請專利等情形:

論文:■已發表 □未發表之文稿 □撰寫中 □無

專利:□已獲得 □申請中 ■無

技轉:□已技轉 □洽談中 ■無

其他:(以 100 字為限)

3. 請依學術成就、技術創新、社會影響等方面,評估研究成果之學術或應用價

值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)(以

500 字為限)

' ' parabolic method in o.d.e. ' ' 2010 已 被 接 受 在 Taiwanese Journal of

Mathematics(sci)

旨於臺灣人口成長問題與特性

另一文''Mathematical model of enterprise competitiveness and performance''

已投 sci 期刊 正審核中

(16)

參考文獻

相關文件

6 《中論·觀因緣品》,《佛藏要籍選刊》第 9 冊,上海古籍出版社 1994 年版,第 1

The first row shows the eyespot with white inner ring, black middle ring, and yellow outer ring in Bicyclus anynana.. The second row provides the eyespot with black inner ring

When the spatial dimension is N = 2, we establish the De Giorgi type conjecture for the blow-up nonlinear elliptic system under suitable conditions at infinity on bound

Quadratically convergent sequences generally converge much more quickly thank those that converge only linearly.

“Find sufficiently accurate starting approximate solution by using Steepest Descent method” + ”Compute convergent solution by using Newton-based methods”. The method of

denote the successive intervals produced by the bisection algorithm... denote the successive intervals produced by the

Hope theory: A member of the positive psychology family. Lopez (Eds.), Handbook of positive

For ASTROD-GW arm length of 260 Gm (1.73 AU) the weak-light phase locking requirement is for 100 fW laser light to lock with an onboard laser oscillator. • Weak-light phase