• 沒有找到結果。

Numerical and Experimental Study of Piezoelectric Valveless Micropump 詹宗興、鄭江河

N/A
N/A
Protected

Academic year: 2022

Share "Numerical and Experimental Study of Piezoelectric Valveless Micropump 詹宗興、鄭江河"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Numerical and Experimental Study of Piezoelectric Valveless Micropump 詹宗興、鄭江河

E-mail: 9806441@mail.dyu.edu.tw

ABSTRACT

The present paper aims to present the design, fabrication, and test of a novel valveless piezoelectrically actuated micropump. The proposed micropump mainly comprises a stainless-steel structured chamber with a piezoelectric (PZT) diaphragm as a driving source to propel liquid stream under actuation. An integrated diffuser/ nozzle bulge piece was devised to produce a flow resistance

difference across the fluid inlet and the outlet for delivering a net liquid flowrate. During tests, the micropump, operating at the frequency of 250 Hz and the voltage of 160 Vpp, engendered a mean water flowrate up to 0.779 ml/min. In the analysis, the computational fluid dynamics (CFD) software ESI-CFD ACE+? was used to examine the time-varying flow phenomenon inside a full-scale PZT micropump throughout an actuation cycle. The computational approach adopted the transient three-dimensional conservation equations of mass and momentum with the moving boundary specified to represent the movement of the diaphragm.

To validate the computer package, the predictions were compared with measured water flowrates generated by the micropump. The simulations revealed that the number of vortices and their rotating direction were determined by the driving amplitude and

frequency of the diaphragm. At the frequency ranging from 100 to 250 Hz, the vortex pairs were clearly formed and thereby caused a relatively high pressure drop near the diffuser outlet inside the micropump chamber. In effect, the presence of vortex pairs could develop distinct resistance characteristics in the advancing and retreating phases of the PZT diaphragm to generate a net pumping flowrate from the inlet to the outlet over a full actuation cycle. Numerical experiments were also carried out by varying the opening angle of the diffuser/nozzle module within the range of 8°-12°, the angle setting of 8° can provide the best performance in term of the maximum pumping flowrate achieved.

Keywords : Valveless micropump、Piezoelectric actuator、CFD simulation、MEMS Table of Contents

封面內頁 簽名頁

授權書………iii

中文摘要………iv

英文摘要………v

誌謝………vi

目錄………vii

圖目錄………ix

第一章 緒論………1

1.1 研究動機………1

1.2 文獻回顧………3

1.2.1 無閥微型幫浦之工作原理………4

1.2.2 國外微型幫浦相關研究………6

1.2.3 無閥微型幫浦數值之相關研究………11

1.2.4國內無閥微型幫浦研究………13

1.3 研究目的………14

第二章 研究方法………16

2.1 壓電無閥微幫浦設計/製作………16

2.2 不鏽鋼雙面蝕刻製程………18

2.3 壓電片功能檢測與壓電無閥微幫浦流量實驗架 設………20

2.4 理論分析………23

2.5 數值方法………24

第三章 結果與討論………28

(2)

3.1 網格解析………28

3.2 實驗驗證………29

3.3 理論模型驗證與關鍵參數權衡分析………36

3.3.1數值模擬分析之週期流量計………36

3.3.2 擴流器角度(opening angle)與頻率影響………37

第四章 結論………39

參考文獻………40 REFERENCES

[1].E. Stemme and G. Stemme, “A valveless diffuser/nozzle-based fluid pump,”Sensors and Actuators A: Physical, vol. 39, pp. 159-167, 1993[2].F. C. M. van de Pol, “A pump based on micro- engineering technique,”Ph. D. thesis, Enschede, the Netherlands: University of Twente, 1989.

[3].A. Olsson, G. Stemme, and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,

”Sensors and Actuators A: Physical, vol. 84, pp. 165-175, 2000.

[4].Smith, L., “Micromachined nozzled fabricated with replicative method,”Micromechanics Europe 1990 (MME ′90), Berlin, Germany, 26-27 November, 53- 57, 1990.

[5].Gerlach T, “A simple micropump employing dynamic passive valves made in silicon, ”Proc. Micro system Technologies, 40, 1025-1034, 1994.

[6].F. K. Forster, R. L. Bardell, M. A. Afromowitz, N. R. Sharma, A. Blanchard, “Design, fabeication and testing of fixed-valve micro-pumps,

”Proceedings of the ASME Fluids Engineering Division ASME 234, 39-44, 1995[7].A. Olsson, G. Stemme and E. Stemme, “The first valve-less diffuser gas pump,”Proc. 10th Int. Workshop Microelectromechanical Systems (IEEE MEMS ‘97), Nagoya, Japan, pp.108-113, 26-30 Jan 1997.

[8].W. van der Wijnggart, H. Andersson, P. Enoksson, K. Noren and G. Stemme, “The first self-priming and bi-directional valve-less diffuser miropump for both liquid and gas, ”Proc. 13th Annual International Conference on Microelectromechanical Systems (IEEE MEMS 2000), Miyazaki, Japan, pp.674-679, 23-27 Jan 2000.

[9].H. Andersson, W. van der Wijnggart, P. Nilsson, P. Enoksson and G. Stemme, “A valve-less diffuser micropumps for microfluidic analytical systems, ”Sensors and Actuators B, pp.259-265,72, 2001.

[10].A. Olsson, G. Stemme and E. Stemme, “A valve-less planar pump with two pump with two pump chambers,”Sensors and Actuators A, 46-47, pp.549-556, 1995.

[11].A. Olsson, P. Enoksson, G. Stemme and E. Stemme, “A valve-less planar pump in silicon, ”Proc. 8th Int. Conf. Solid-State Sensor and Actuators (IEEE Transducers ’95), Stockholm, Sweden, 25-29, pp. 291-294, June 1995.

[12].A. Olsson, G. Stemme and E. Stemme, “Diffuser-element design investigation for valve-less pumps,”Sensors and Actuators A, 57, pp.137-143, 1996.

[13].A. Olsson, P. Enoksson, G. Stemme and E. Stemme, “Simulation studies of diffuser and nozzle elements for valve-less micropumps, ”Proc.

1997 Int. Conf. Solid-State Sensor and Actuators (IEEE Transducers ’97), Chicago, USA, 16-19, pp. 1039-1042, June 1997.

[14].A. Olsson, P. Enoksson, G. Stemme and E. Stemme, “An improved valve-less pump fabricated using deep reactive ion etching, ”Proc. 9th Int. Workshop Microelectromechanical Systems (IEEE MEMS ‘96), San Diego, USA, pp.479-484 Jan. 1996.

[15].X. N. Jiang, Z. Y. Zhou, X. Y. Huang, Y. Li, Y. Yang and C. Y. Liu, “Micronozzle/diffuser flow and its application in micro valveless pumps, ”Sensors and Actuators A, 70, pp.81-87, 1998.

[16].A. Olsson, G. Stemme and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,

”Sensors and Actuators A, 84, pp.165-175, 2000.

[17].A. Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman and G. Stemme , “Valve-less diffuser micropumps fabricated using thermoplastic replication, ”Proc. 10th Int. Workshop Microelectromechanical Systems (IEEE MEMS ‘97), Nagoya, Japan, pp.305-310, 26-30 Jan. 1997,.

[18].Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman and G. Stemme, “Valve-less diffuser micropumps fabricated using thermoplastic replication, ”Sensors and Actuators A, 64, pp.63-68, 1998.

[19].A.Olsson, G. Stemme, “Diffuser-element design investigation for vlave-less pumps,”Sensors and Actuators A, 57, 137-143, 1996.

[20].A. Olsson, E. Stemme, “A numerical design study of the valveless diffuser pump using a lumped-mass model,”J. Micromechanics and Microengineering, 9, 34-44, 1999.

[21].A. Olsson, G. Stemme, E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,

”Sensors and Actuators, A 84, 165-175, 2000.

[22].B. Wang, X. Chu, E. Li and L. Li, “Simulations and analysis of a piezoelectric micropump,” Ultrasonics, Vol. 44, pp.643-646, 2007.

[23].林建廷, “無閥門微型幫浦之理論分析”,國立台灣大學應用力學所碩士論文,2002.

[24].林俊達, “無閥門微型幫浦之數值模擬”,國立台灣大學應用力學所碩士論文,2003.

(3)

[25].?卓錚, “檔體式無閥門為型幫浦之?值模擬”, 台灣大學應用?學所,2004[26].?智凱, “新式無閥門微型幫浦之開發”,國立台灣大 學應用力學所碩士論文,2004.

[27].吳咨亨, “無閥門壓電微幫浦與混合器之整合設計”, 國立台灣大學應用力學所碩士論文, 2005.

[28].曾裕博, “無閥式微型幫浦數值模擬與效率分析”, 國立台灣大學機械工程所碩士論文, 2005.

[29].林立智, “壓電式微型幫浦之數值模擬”, 國立台灣大學機械工程所碩士論文, 2007.

[30].陳智凱, “創新式壓電無閥式微幫浦之設計與製作”, 私立大葉大學機械工程所碩士論文, 2008.

[31].Dae-Sik Lee, Hyun C. Yoon and Jong Soo Ko, “Fabrication and characterization of a bidirectional valveless peristaltic micropump and its application to a flow-type immunoanalysis”, Sensors and Actuators B, pp.409-415, 2004.

[32].Yih-Lin Cheng, jiang-Hong Lin, “Manufacture of three-dimensional valveless micropump”, Journal of Materials Processing Technology, pp 192-193, 2007[33].Van Doormaal, J. P. and Raithby, G. D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows,”

Numerical Heat Transfer, Vol. 7, 1984, pp. 147-163[34].Pilliod, J. E.,and Puckett, E. G., “Second Order Volume-of-Fluid Interface racking Algorithms”, Journal Computational Physics, Vol. 188, No. 1, pp.100-122, 2003.

[35].紀穎旻, “無閥式微泵浦之模擬設計分析”, 國立雲林科技大學機械工程所碩士論文, 2007

參考文獻

相關文件

220V 50 Hz single phase A.C., variable stroke control, electrical components and cabling conformed to the latest B.S.S., earthing through 3 core supply cable.. and 2,300 r.p.m.,

3: Calculated ratio of dynamic structure factor S(k, ω) to static structure factor S(k) for "-Ge at T = 1250K for several values of k, plotted as a function of ω, calculated

We compare the results of analytical and numerical studies of lattice 2D quantum gravity, where the internal quantum metric is described by random (dynamical)

www.edb.gov.hk> School Administration and Management> Financial Management > Notes to School Finance> References on Acceptance of Advantages and Donations by Schools

Two cross pieces at bottom of the stand to make a firm base with stays fixed diagonally to posts. Sliding metal buckles for adjustment of height. Measures accumulated split times.

Type case as pattern matching on values Type safe dynamic value (existential types).. How can we

“IEEE P1451.2 D2.01 IEEE Draft Standard for A Smart Transducer Interface for Sensors and Actuators - Transducer to Microprocessor Communication Protocols

This research studied the experimental studies of integration of price and volume moving average approach in Taiwan stock market, including (1) the empirical studies of optimizing