• 沒有找到結果。

四面體的餘弦定理

N/A
N/A
Protected

Academic year: 2022

Share "四面體的餘弦定理"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)

四面體的餘弦定理

朱漢民

1. 前言

本文提出三種不同形式的四面體的餘弦定理。

我們從介紹 Binet - Cauchy 恆等式開始, 來推導第一個形式的四面體的餘弦定理。 在高 中立體幾何的教學中, 一個基本能力是求正四面體的兩面角; 但如果想求出任意四面體的兩面 角, 中學的數學知識可能就不夠用了。 本文中第一個形式的四面體的餘弦定理讓我們能夠計算 已知所有稜長的四面體的每一個兩面角 (即使 6 條稜長均不相等)。

接下來, 我們利用一個向量外積的恆等式來推導第二個形式的四面體的餘弦定理。

最後, 結合第一段中介紹過的 Binet - Cauchy 恆等式, 以及第二個形式的四面體的餘弦 定理, 我們推導出了第三個形式的四面體的餘弦定理。 這個形式是最貼近立體的畢氏定理的一 般化結果; 此外, 它也提供我們一個計算立體坐標系中一個截面面積的簡便算法。

2. Binet - Cauchy 恆等式

定理一: (Binet - Cauchy 恆等式)

對任意四個數列 : haki、 hbki、 hcki、hdki 而言, 必有

Xn

i=1

aici

Xn

j=1

bjdj

−Xn

i=1

aidi

Xn

j=1

bjcj

= X

1≤i<j≤n

(aibj − ajbi)(cidj− cjdi)

證明 :

Xn

i=1

aici

Xn

j=1

bjdj

−Xn

i=1

aidi

Xn

j=1

bjcj



=

n

X

i=1 n

X

j=1

aicibjdj −

n

X

i=1 n

X

j=1

aidibjcj

62

(2)

= X

1≤i<j≤n

aicibjdj + X

1≤i=j≤n

aicibjdj + X

1≤j<i≤n

aicibjdj



− X

1≤i<j≤n

aidibjcj + X

1≤i=j≤n

aidibjcj + X

1≤j<i≤n

aidibjcj

 其中

X

1≤i=j≤n

aicibjdj =

n

X

i=1

aibicidi = X

1≤i=j≤n

aidibjcj

X

1≤j<i≤n

aicibjdj = X

1≤i<j≤n

ajcjbidi, X

1≤j<i≤n

aidibjcj = X

1≤i<j≤n

ajdjbici

故得

Xn

i=1

aici

Xn

j=1

bjdj

−Xn

i=1

aidi

Xn

j=1

bjcj



= X

1≤i<j≤n

(aicibjdj + ajcjbidi) − X

1≤i<j≤n

(aidibjcj+ ajdjbici)

= X

1≤i<j≤n

(aicibjdj + ajcjbidi− aidibjcj − ajdjbici)

= X

1≤i<j≤n

(aibj − ajbi)(cidj − cjdi)

證畢。 

當我們取 n = 3, 可得以下外積與內積關係的恆等式 : 定理二 : (三維的 Binet - Cauchy 恆等式)

假設 ~a、 ~b、 ~c、 ~d 為空間向量, 則

(~a ×~b) · (~c × ~d) =

~a · ~c ~b · ~c

~a · ~d ~b · ~d

證明 : 設 ~a = (a1, a2, a3)、 ~b = (b1, b2, b3)、 ~c = (b1, b2, b3)、 ~d = (d1, d2, d3), 則由定理一可得 (~a · ~c)(~b · ~d) − (~a · ~d)(~b · ~c) = (~a ×~b) · (~c × ~d)

證畢。 

根據三維的 Binet - Cauchy 恆等式, 我們討論第一種四面體的餘弦定理 :

(3)

3. 四面體的餘弦定理 TYPE I

就像三角形的餘弦定理那樣, 我們希望只要給定一個四面體的所有稜長, 我們就可以求出 任兩面的兩面角! 如圖 1, 四面體 O-ABC 中, 我們希望能直接以稜長 : OA = a、OB = b、OC = c、 BC = d、 CA = e、 AB = f 來表示出 O-ABC 中兩個側面 △OBC 與

△OCA 的兩面角。

圖 1

令 △OBC 與 △OCA 的兩面角為 θ (四面體 O-ABC 內部那一個! 如圖 1 所示), 則 根據 「外積與兩面角的關係」, 並配合 「右手定則」, 我們有

cos θ = (OB ×−→ OC ) · (−→ OA ×−→ OC )−→

|OB ×−→ OC | · |−→ OA ×−→ OC |−→

引入定理二, 我們得到

cos θ =

−→

OB ·OA−→ OC ·−→ OA−→

−→

OB ·OC−→ OC ·−→ OC−→

|OB ×−→ OC | · |−→ OA ×−→ OC |−→

其中, 將 OA = a、 OB = b、 OC = c、 BC = d、 CA = e、 AB = f 等符號代入, 我們得到













−→

OB ·OA = a × b × cos ∠AOB = a × b ×−→ a2+ b2− f2

2ab = a2+ b2− f2 2

−→

OB ·OC = c × b × cos ∠COB = c × b ×−→ c2+ b2− d2

2cb = c2+ b2 − d2 2

−→

OC ·OA = c × a × cos ∠COA = c × a ×−→ c2 + a2− e2

2ca = c2+ a2− e2 2 (三角形的餘弦定理)

a△OCB = 1

4p4c2b2 − (c2+ b2− d2)2 、 a△OCA = 1

4p4c2a2− (c2+ a2− e2)2

(4)

(秦九韶公式), 其中 a△OCB、 a△OCA 分別表示 △OCB、 △OCA 的面積。

綜合得到 :

cos θ =

a2+ b2− f2 2

c2+ b2 − d2 2 c2+ a2− e2

2 c2

2 ·

1

4p4c2b2− (c2+ b2− d2)2

· 2 ·

1

4p4c2a2− (c2+ a2− e2)2 繼續整理可得 :

cos θ =

a2 + b2− f2 c2 + b2− d2 c2+ a2− e2 2c2

p4c2b2− (c2+ b2− d2)2p4c2a2− (c2+ a2− e2)2 我們得到

定理三 : (給定稜長的四面體的兩面角計算公式)

如圖 1 所示, 令 OA = a、 OB = b、 OC = c、 BC = d、 CA = e、 AB = f , 且令

∠(OCB, OCA) 為 △OBC 與 △OCA 的兩面角 (四面體 O-ABC 內部那一個!), 則

cos ∠(OCB, OCA) =

a2+ b2− f2 c2+ b2− d2 c2+ a2− e2 2c2

p4c2b2− (c2+ b2− d2)2p4c2a2− (c2+ a2− e2)2 以下我們給幾個例子 :

例 1 : 如果四面體 O-ABC 為正四面體, 即 a = b = c = d = e = f , 則

cos ∠(OCB, OCA) =

a2+ a2− a2 a2+ a2− a2 a2+ a2− a2 2a2

p4a2a2− (a2+ a2 − a2)2p4a2a2− (a2+ a2− a2)2

=

a2 a2 a2 2a2

√ 3a4

3a4 =

1 1 1 2

√ 3√

3 = 1 3 這是被大家所熟知的 : 正四面體的兩面角的餘弦值為 1

3。

(5)

例 2 : 設四面體 O-ABC 如圖 2 所示, 則

cos ∠(OCB, OCA) =

22+ 22− 22 22+ 22− 12 22+ 22− 22 2 · 22

p4 · 22· 22− (22 + 22− 12)2p4 · 22· 22− (22+ 22− 22)2

=

4 7 4 8

√ 15√

48 = 4 12√

5 =

√5 15

圖 2

例 3 : 設四面體 O-ABC 如圖 3 所示, 則

cos ∠(OCB, OCA) =

(4.5)2+ 52− 22 62+ 4.52− 62 62+ 52− 82 2 · 62

p4 · 62· (4.5)2− (62+ (4.5)2− 62)2p4 · 62· 52−(62+ 52−82)2

=

41.25 20.25

−3 72

3326.0625√

3591 = 3030.75

√11943890.4375 ≈ 0.88, 查表可知 : ∠(OCB, OCA) ≈ 2820

圖 3

還有兩種四面體的餘弦定理, 依序介紹如下 :

(6)

4. 四面體的餘弦定理 TYPE II

我們先提出一個外積的運算性質 :

任給空間中四個點 O、 A、 B、 C, 則我們有

−→

OB ×OC +−→ OC ×−→ OA +−→ OA ×−→ OB =−→ AB ×−→ AC−→ (1) 證明 : 僅需重複運用外積的基本性質 :

−→

OB ×OC +−→ OC ×−→ OA +−→ OA ×−→ OB −−→ AB ×−→ AC−→

=OC ×(−→ OA −−→ OB )+−→ OA ×−→ OB −−→ AB ×−→ AC−→

=OC ×−→ BA +−→ OA ×−→ OB −−→ AB ×−→ AC−→

=AB ×−→ OC −−→ AB ×−→ AC +−→ OA ×−→ OB−→

=AB ×(−→ OC −−→ AC )+−→ OA ×−→ OB =−→ AB ×−→ OA +−→ OA ×−→ OB−→

=OA ×(−→ OB −−→ AB ) =−→ OA ×−→ OA = ~0−→

證畢。 

圖 4

我們規定符號如下 (請參考圖 4 ):

令四面體 O-ABC 中, △OCA 與 △OAB、 △OBC 與 △OAB、 △OCA 與 △OBC 在四面體內部的兩面角分別為 α、 β、 γ; 而 a△OBC、 a△OCA、 a△OAB、 a△ABC 則分 別表示 △OBC、 △OCA、 △OAB、 △ABC 的面積。

(1) 式兩邊取平方得 : (a△ABC)2 = 1

4|AB ×−→ AC |−→ 2 = 1

4|OB ×−→ OC +−→ OC ×−→ OA +−→ OA ×−→ OB |−→ 2

(7)

=1

4|OB ×−→ OC |−→ 2+ 1

4|OC ×−→ OA |−→ 2+ 1

4|OA ×−→ OB |−→ 2 +1

2(OB ×−→ OC ) · (−→ OC ×−→ OA ) +−→ 1

2(OC ×−→ OA ) · (−→ OA ×−→ OB )−→

+1

2(OB ×−→ OC ) · (−→ OA ×−→ OB )−→

= (a△OBC)2+ (a△OCA)2+ (a△OAB)2+ 2(a△OBC)(a△OCA) cos(π − γ) +2(a△OCA)(a△OAB) cos(π − α) + 2(a△OAB)(a△OBC) cos(π − β) (請注意右手定則!)

= (a△OBC)2+ (a△OCA)2+ (a△OAB)2− 2(a△OCA)(a△OAB) cos α

−2(a△OAB)(a△OBC) cos β − 2(a△OBC)(a△OCA) cos γ.

我們得到 :

定理四: (四面體的餘弦定理 TYPE II)

令四面體 O-ABC 中 (請參考圖 4), △OCA 與 △OAB、 △OAB 與 △OBC、 △OBC 與 △OCA 在內部的兩面角分別為 α、 β、 γ; 而 a△OBC、 a△OCA、 a△OAB、 a△ABC 分別表示 △OBC、 △OCA、 △OAB、 △ABC 的面積。 則

(a△ABC)2= (a△OBC)2+ (a△OCA)2+ (a△OAB)2− 2(a△OCA)(a△OAB) cos α

−2(a△OAB)(a△OBC) cos β − 2(a△OBC)(a△OCA) cos γ.

最後, 我們利用三維的 Binet - Cauchy 恆等式, 以及四面體的餘弦定理 TYPE II 推出第三 種四面體的餘弦定理。

5. 四面體的餘弦定理 TYPE III

我們考慮 OA 、−→ OB 、−→ OC 三個方向的單位向量−→ OA−→、 OB−→、 OC−→, 如下圖 5 :

圖 5

(8)

令 ∠BOC = A, ∠COA = B, ∠AOB = C, 由三維的 Binet - Cauchy 恆等式以及內 積定義可知 :

(OB−→ ×OC−→) · (OA−→ ×OC−→) =

−→

OB ·OA−→ OC−→ ·OA−→

−→

OB ·OC−→ OC−→ ·OC−→

=

cos C cos B cos A 1

= cos C − cos A cos B 另一方面, 由內積定義, 外積的幾何意義與三角形面積公式可知 :

(OB−→ ×OC−→) · (OA−→ ×OC−→) = (2 · a△OBC)(2 · a△OAC) cos γ = sin A sin B cos γ 綜合可得, sin A sin B cos γ = cos C − cos A cos B, 同理, 我們總共有以下三個式子 :





sin A sin B cos γ = cos C − cos A cos B sin B sin C cos α = cos A − cos B cos C sin C sin A cos β = cos B − cos C cos A

最後, 我們將此三式代入四面體的餘弦定理 TYPE II, 且沿用符號 OA = a、 OB = b、

OC = c 得到 :

(a△ABC)2= (a△OBC)2+(a△OCA)2+(a△OAB)2−21

2ac sin B1

2ab sin C cos α

−21

2ab sin C1

2bc sin A

cos β − 21

2bc sin A1

2ac sin B cos γ

= (a△OBC)2+ (a△OCA)2+ (a△OAB)2− 1

2abc[a(sin B sin C cos α) +b(sin C sin A cos β) + c(sin A sin B cos γ)]

= (a△OBC)2+ (a△OCA)2+ (a△OAB)2− 1

2abc[a(cos A − cos B cos C) +b(cos B − cos C cos A) + c(cos C − cos A cos B)]

我們將之命名為

定理五 : (四面體的餘弦定理 TYPE III)

四面體 O-ABC 中, 如圖 6, 若 OA = a、 OB = b、 OC = c、 ∠BOC = A、 ∠COA = B、 ∠AOB = C, 則

(a△ABC)2= (a△OBC)2+ (a△OCA)2+ (a△OAB)2− 1

2abc[a(cos A − cos B cos C) +b(cos B − cos C cos A) + c(cos C − cos A cos B)]

(9)

圖 6 特別地, 當 A = B = C = 90 時, 我們得到 : 定理六: (四面體的畢氏定理)

四面體 O-ABC 中, 如圖 7, 若 ∠BOC = ∠COA = ∠AOB = 90, 則

(a△ABC)2 = (a△OBC)2+ (a△OCA)2+ (a△OAB)2

圖 7

以下我們給一個有趣的例子 : 此題是 82 年大學聯考自然組某一道題組的最後一個小題。 該題 組中設計了兩個小題在這個面積問題之前做準備; 可以想見此道問題如果以一般的手法計算相 當複雜。 但是, 根據我們所提出的四面體的畢氏定理, 計算上輕鬆非常多!

例 4 : 設平面 x + y +√

2z = 1 與 x 軸、 y 軸、 z 軸分別交於 A、B、C 三點, 試求 △ABC 的面積。

解 : 容易計算 : A(1, 0, 0)、 B(0, 1, 0)、 C(0, 0,

√2

2 ), 從而, a△OBC =

√2

4 、 a△OCA =

(10)

√2

4 、 a△OAB = 1

2, 代入四面體的畢氏定理得到 : (a△ABC)2 =√

2 4

2 +√

2 4

2 +1

2

2

= 1/2,

故得 △ABC 的面積 =

√2 2 。

參考文獻

1. 游森棚等 (民100)。 普通高級中學數學第四冊。 台南市 : 翰林。

2. 蔡聰明(民89)。 畢氏定理的兩個推廣。 科學月刊, 第 25 卷第 20 期。

3. 李虎雄等 (民100)。 普通高級中學數學第四冊教師手冊。 新北市 : 康熹文化。

4. 項武義 (民99)。 基礎幾何學。 台北市 : 五南。

—本文作者任教國立北門高中, 現於國立高雄大學應用數學系博士班進修—

參考文獻

相關文件

畢氏定理和相似形比例關係是處理幾何計量問題的兩大支柱。 從這兩大支柱又演化出正弦 定律和 餘弦定律, 應用起來更具威力。 然而眾所周知, 在利用正、 餘弦定律解題的時候, 由於經 常涉及

第四天,如果說這是最科技的一天,一定不為過,Panasonic 裡面有 語音導覽式的教學遊戲,語音導覽的機器真的要親自體驗才知道他的魅

中國人 稱畢氏定理為勾股 (弦) 或商高定理。 傳統上, 勾股定理的證明是利用四個一樣的 直 角三角形依序排成一個大正方形, 中間空出一個小正方形, 然後利用面積關係得出 「勾股各自 乘,

Baker, Integration over spheres and the divergence theorem for balls, Amer.. Folland, How to integrate a polynomial over a

在中學時期, 求方程式是代數學上面的重要課題。 在一元方程式方面, 我們學會了利用公 式求一元一次、 二次方程式的解, 也知道它們的圖形是直線或拋物線。 在圖形是曲線的一元三次 以上的方

[r]

需要指出的是: 文 [7] 中 「海倫四面體不存在」 這個結論是不準確的。 事實上, 文 [8] 作者 就找到了 若干 Heron 四面體 (文 [8] 中稱之為 Perfect pyramid, 意為 「完美金字塔」)。 其中

節名 指數函數 對數函數 弧度量 三角函數的圖形 平面向量表示法 平面向量的內積 行列式與一次方程組