• 沒有找到結果。

Chapter 2 Differentiation (微分)

N/A
N/A
Protected

Academic year: 2022

Share "Chapter 2 Differentiation (微分)"

Copied!
66
0
0

加載中.... (立即查看全文)

全文

(1)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Chapter 2 Differentiation

(微分)

Hung-Yuan Fan (范洪源)

Department of Mathematics, National Taiwan Normal University, Taiwan

Fall 2018

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 1/65

(2)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

本章預定授課範圍

2.1 The Derivative and the Tangent Line Problem 2.2 Basic Differentiation Rules and Rates of Change 2.3 Product and Quotient Rules and Higher-Order Derivatives

2.4 The Chain Rule

2.5 Implicit Differentiation

2.6 Derivatives of Inverse Functions

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 2/65

(3)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Section 2.1

The Derivative and the Tangent Line Problem

(導數與切線問題)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 3/65

(4)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Tangent Line Problem (切線問題)

Let f be a real-valued function defined on I = (a, b) with c∈ I.

What is the slope (斜率) m of the tangent line (切線) to the graph of f at the point P(c, f(c))?

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 4/65

(5)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

示意圖 (承上頁)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 5/65

(6)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

示意圖 (承上頁)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 5/65

(7)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Obsevation

Since the slope of the secant line (割線) passing through P(c, f(c)) and Q(c + ∆x, f(c + ∆x)) is

msec = ∆y

∆x = f(c + ∆x)− f(c)

∆x ,

the slope m of the tangent line at P is determined by considering m = lim

∆x→0msec= lim

∆x→0

f(c + ∆x)− f(c)

∆x .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 6/65

(8)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Def (切線的定義)

Ifm = lim

∆x→0

f(c+∆x)−f(c)

∆x = lim

x→c

f(x)−f(c)

x−c , then the line passing through P(c, f(c))with slope m is called a tangent line to the graph of f at P.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 7/65

(9)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Vertical Tangent Lines

Def (垂直切線的定義)

A line x = c is called the vertical tangnet line (垂直切線) to the graph of f at the point (c, f(c)) if

lim

∆x→0+

f(c + ∆x)− f(c)

∆x = lim

x→c+

f(x)− f(c)

x− c =±∞

or

lim

∆x→0

f(c + ∆x)− f(c)

∆x = lim

x→c

f(x)− f(c)

x− c =±∞.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 8/65

(10)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

垂直切線的示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 9/65

(11)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Remark (切線方程式)

Equation of the tangent line to the graph of y = f(x) at the point (c, f(c)) is given by

y− f(c) = m(x − c). (Point-Slope Form; 點斜式)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 10/65

(12)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 4

Let f(x) =√

x for x≥ 0.

(a) Find the tangent line to the graph of f at (4, 2).

(b) Find the slopes of the graph of f at (1, 1) and (0, 0).

Sol: For c > 0, the slope of a tangent line passing through (c, f(c))

is given by

m = lim

∆x→0

f(c + ∆x)− f(c)

∆x = lim

∆x→0

√c + ∆x−√ c

∆x

= lim

∆x→0

∆x

∆x(

c + ∆x +√

c) = 1

√c + 0 +√

c = 1 2

c.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 11/65

(13)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

(a) At the point (4, 2), m = 1

2

4 = 14 and the equation of the tangent line at (4, 2) is

y− 2 = 1

4(x− 4) or y = 1 4x + 1.

(b) The slope of the graph of f at (1, 1) is m = 1

2

1 = 12. In addition, the slope of a tangent line at (0, 0) is

lim

∆x→0+

f(0 + ∆x)− f(0)

∆x = lim

∆x→0+

1

∆x =∞, and hence the graph of f has a vertical tangent line at x = 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 12/65

(14)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

示意圖 (承上例)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 13/65

(15)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Homework

Read Examples 1 and 2 by yourself.

Def (導數或導函數的定義)

(1) The derivative (導數) of f at x∈ dom(f) is f(x) = lim

∆x→0

f(x + ∆x)− f(x)

∆x = lim

z→x

f(z)− f(x) z− x .

(2) f is differentiable (可微分; 簡寫為 diff.) at x∈ dom(f) if the derivative f(x) .

(3) f is diff. on I = (a, b) if it is diff. at each x∈ I.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 14/65

(16)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Notes

If S ={x ∈ dom(f) | f (x)∃}, the first derivative f can be regarded as a function defined on S.

For any y = f(x), the derivative is often denoted by f (x) = y(x) = df(x)

dx = dy

dx = Dxf(x) = D1f(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 15/65

(17)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 16/65

(18)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Recall

Sice the following equality

(a + b)3 = a3+ 3a2b + 3ab2+ b3 holds for any a, b∈ R, we immediately obtain

(x + ∆x)3= x3+ 3x2(∆x) + 3x(∆x)2+ (∆x)3.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 17/65

(19)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Differentiability v.s. Continuity

Thm 2.1 (可微分 = ⇒ 連續)

Let f be a real-valued function defined on X⊆ R with c∈ X = dom(f). If f is diff. at c, then f is conti. at c.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 18/65

(20)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 19/65

(21)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 20/65

(22)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Remarks

1 函數的可微分點必定是連續點,詳見 Thm 2.1。

2 但是,函數的連續點不一定是可微分點! 詳見 Example 6 和 Example 7。

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 21/65

(23)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Sections 2.2 & 2.3

Basic Differentiation Rules and Higher-Order Derivatives (基本微分法則與高階導數)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 22/65

(24)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm (Basic Differentiation Rules)

Let f and g be diff. functions of x and c∈ R. Then (1) dxd[c] = 0.

(2) dxd[xn] = n· xn−1 for n∈ R. (3) dxd[f(x)± g(x)] = f(x)± g(x).

(4) dxd[c· f(x)] = c · ˙f(x).

(5) dxd[f(x)g(x)] = f(x)g(x) + f(x)g(x) =(前微)(後不微)+(前不微)(後微). (6) dxdh

f(x) g(x)

i

= f(x)g(x)[g(x)]−f(x)g2 (x) = (子微)(母不微) - (子不微)(母微)

(母)2 .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 23/65

(25)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 24/65

(26)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 25/65

(27)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 26/65

(28)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 27/65

(29)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm (Derivatives of Elementary Functions)

(1) dxd[sin x] = cos x, dxd[cos x] =− sin x.

(2) dxd[tan x] = sec2x, dxd[cot x] =− csc2x.

(3) dxd[sec x] = sec x tan x, dxd[csc x] =− csc x cot x.

(4) dxd[ex] = ex, dxd[ ln|x| ] = 1x forx̸= 0.

Equivalent Def. of Euler number e

The number e is the base number of an exponential function s.t.

the slope of the tangent line at (0, 1) is 1, i.e., it satisfies

lim

∆x→0

e∆x− e0

∆x = lim

∆x→0

e∆x− 1

∆x = 1.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 28/65

(30)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Sketch of the Proof

(1)

d

dx[sin x] = lim

∆x→0

sin(x + ∆x)− sin x

∆x

= lim

∆x→0

sin x cos(∆x) + cos x sin(∆x)− sin x

∆x

= sin x

 lim

∆x→0

cos(∆x)− 1

∆x



+ cos x

 lim

∆x→0

sin(∆x)

∆x



= (sin x)(0) + cos x· 1 = cos x.

(2) dxd[tan x] = dxd hsin x

cos x

i

= cos2cosx+sin2x2x = sec2x.

(3) dxd[sec x] = dxd h 1

cos x

i

= (0) cos x−1·(− sin x)

cos2x =

 1 cos x

sin x cos x



= sec x tan x.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 29/65

(31)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 30/65

(32)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 31/65

(33)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Higher-Order Derivatives (高階導函數)

Let y = f(x) be a diff. function of x. Then first derivative: y = f (x) = dydx = dxd[f(x)].

second derivative: y ′′= f ′′(x) = ddx2y2 = dxd22[f(x)]≡ dxd(y).

third derivative: y ′′′ = f′′′(x) =ddx3y3 = dxd33[f(x)]≡ dxd(y′′).

fourth derivative: y(4)= f(4)(x) = ddx4y4 = dxd44[f(x)]≡ dxd(y ′′′).

...

nth derivative: y(n) = f(n)(x) = ddxnyn = dxdnn[f(x)]≡ dxd(y(n−1)) for n∈ N. Here, we denote y(0)= y = f(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 32/65

(34)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Section 2.4 The Chain Rule

(連鎖律)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 33/65

(35)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm 2.11 (The Chain Rule; 連鎖律)

If y = f(u) is a diff. function of u and u = g(x) is a diff. function of x, then y = f(g(x)) is a diff. function of x and

dy dx = dy

du du

dx or d dx

h

f(g(x))i

= f (g(x))· g(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 34/65

(36)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 35/65

(37)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm 2.12 (General Power Rule; 廣義冪法則)

If u(x) is a diff. function of x, then y =h

u(x)in

is also a diff.

function for anyn∈ Rwith y = n·h

u(x)in−1

· u(x).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 36/65

(38)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 37/65

(39)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 8

Find f(x) if f(x) = x p3

x2+ 4 = x (x2+ 4)1/3.

Sol: From the Quotient Rule of Differentiation and the Chain

Rule, we see that

f (x) = 1· (x2+ 4)1/3− x ·(1/3)(x2+ 4)−2/3(2x) (x2+ 4)2/3

= 1

3(x2+ 4)−2/3·h3(x2+ 4)− 2x2 (x2+ 4)2/3

i

= 1

3(x2+ 4)2/3 · x2+ 12

(x2+ 4)2/3 = x2+ 12 3(x2+ 4)4/3.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 38/65

(40)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 11 (1/2)

Fid the derivative y.

(a) y = cos 3x2 = cos(3x2).

(b) y = (cos 3)x2.

(c) y = cos(3x)2 = cos(9x2).

Sol: By the Chain Rule, we have

(a) y = (− sin 3x2)· (6x) = −6x sin(3x2).

(b) y = (cos 3)· (2x) = (2 cos 3)x.

(c) y = (− sin 9x2)· (18x) = −18x sin(9x2).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 39/65

(41)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 11 (2/2)

(d) y = cos2x = (cos x)2. (e) y =√

cos x = (cos x)1/2.

Sol: From the Chain Rule, we see that

(d) y = 2(cos x)(− sin x) = −2sixx cos x.

(e) y = 12(cos x)−1/2(− sin x) = − sin x 2

cos x.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 40/65

(42)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm (Derivatives of e

u

and ln |u|)

If u = u(x) is a diff. function of x, then

(1) dxd[ex] = ex ∀ x ∈ R, dxd[eu] = eu· u.

(2) dxd[ ln x ] = 1x for x > 0, dxd[ ln u ] = uu for u > 0.

(3) dxd[ ln|x| ] = 1x for x̸= 0, dxd[ ln|u| ] = uu for u̸= 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 41/65

(43)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 13

(b) Find y = f(x) if y = f(x) = ln(x2+ 1).

Sol: If we let

u = u(x) = x2+ 1 > 0for x∈ R, then f (x) = d

dx h

ln(x2+ 1) i

= u

u = 2x

x2+ 1 ∀ x ∈ R.

Homework

Please read Example 13 of Section 2.4 by yourself.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 42/65

(44)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 43/65

(45)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 15

Differentiate the following function f(x) = lnx(x2+ 1)2

√2x3− 1 ∀ x ∈ ( 1

3

2,∞).

Sol: Firstly, it follows from Laws of Logarithm that

f(x) = lnh

x(x2+ 1)2

i− lnh

(2x3− 1)1/2i

= ln x + 2 ln(x2+ 1)1

2ln(2x3− 1).

Thus, the first derivative of f is given by f(x) = 1

x+ 2

 2x x2+ 1

1 2

 6x2 2x3− 1



= 1

x+ 4x

x2+ 1 3x2

2x3− 1 ∀ x ∈ ( 1

3

2,∞).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 44/65

(46)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Def (函數 a

x

和 log

a

x 的定義)

Let 0 < a̸= 1.

(1) The exponential function to the base a (以 a 為底的指數函 數) is defined by

ax≡ ex ln a ∀ x ∈ R.

(2) The logarithmic function to the base a (以 a 為底的對數函 數) is defined by

logax≡ ln x

ln a ∀ x > 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 45/65

(47)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm (函數 a

u

和 log

a

|u| 的微分公式)

Let u = u(x) be a diff. function of x and 0 < a̸= 1.

(1) dxd[ax] = (ln a)ax ∀ x ∈ R, dxd[au] = (ln a)au· u. (2) dxdh

logaxi

= (ln a)x1 for x > 0, dxdh logaui

= (ln a)uu for u > 0.

(3) dxdh

loga|x|i

= (ln a)x1 for x̸= 0. (4) dxdh

loga|u|i

= (ln a)uu foru̸= 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 46/65

(48)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 47/65

(49)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Section 2.5

Implicit Differentiation (隱微分)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 48/65

(50)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Representations of a function

Explicit Form (顯式):

y = f(x),

where x is the independent variable (自變量) and y is the dependent variable (應變量).

Implicit Form (隱式):

F(x, y) = 0,

where we assume that y = y(x) is a diff. function of x.

[Q]: How to fined y

= dydx under the implicit form?

Ans: apply the technique of Implicit Differentiation!

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 49/65

(51)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example (補充題)

Find dydx if xy = 1.

Sol:

Assume that y = y(x) is a diff. function of x. Thaen x and y satisfy the following equation

F(x, y)≡ xy − 1 = x ·y(x)− 1 = 0.

Differentiating w.r.t. x on both sides of equality gives that d

dx[x· y(x) − 1] = y + x ·dy dx = d

dx(0) = 0.

So, we have dydx = −yx for x̸= 0.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 50/65

(52)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 8 (利用隱微分求切線方程式)

Find the tangent line to the graph of

x2(x2+ y2) = y2 or F(x, y)≡ x4+ x2y2− y2 = 0 at the point (

2/2,√ 2/2).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 51/65

(53)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Solution of Example 8

Sol:

Assume that y = y(x) is a diff. function of x. It follows from the Chain Rule that

4x3+ 2xy2+ 2x2y·dy

dx− 2y · dy dx = 0.

Thus, the first derivative dydx is given by dy

dx = −2x(2x2+ y2)

2y(x2− 1) = x(2x2+ y2) y(1− x2) . At the given point, m = dydx

x=y=22 = 3/21/2 = 3, and hence the equation of the tangent line at this point is

y−

2 2 = 3

 x−

2 2



or y = 3x−√ 2.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 2, Calculus B 52/65

參考文獻

相關文件

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes. Lecture 4: The LLM bubbling

Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes.. Lecture 4: The LLM bubbling

Taking second-order cone optimization and complementarity problems for example, there have proposed many ef- fective solution methods, including the interior point methods [1, 2, 3,

Corollary 13.3. For, if C is simple and lies in D, the function f is analytic at each point interior to and on C; so we apply the Cauchy-Goursat theorem directly. On the other hand,

Corollary 13.3. For, if C is simple and lies in D, the function f is analytic at each point interior to and on C; so we apply the Cauchy-Goursat theorem directly. On the other hand,

11.4 Differentials and the Chain Rules 11.5 Directional Derivatives and Gradients 11.6 Tangent Planes and Normal Lines 11.7 Extrema of Functions of Two Variables 11.8

關鍵詞:1.paratantralakṣaṇa 2.the simile of phantom 3.the three natures of treatment 4.the mental eject and the consciousness 相見二分 5.the thory of self realization